Zastosowanie różnych znaczników PET-CT w leczeniu i diagnostyce wznowy raka prostaty w oparciu o doniesienia zajazdowe z konferencji onkologicznej ASTRO 59 i przegląd literatury.
PDF (Język Polski)

How to Cite

Burchardt, W., & Burchardt, E. (2019). Zastosowanie różnych znaczników PET-CT w leczeniu i diagnostyce wznowy raka prostaty w oparciu o doniesienia zajazdowe z konferencji onkologicznej ASTRO 59 i przegląd literatury . Letters in Oncology Science, 16(4), 1-7. https://doi.org/10.21641/los.2019.4.16.150

Abstract

Rak prostaty jest drugim co do częstości nowotworem u mężczyzn w Polsce i na świecie. Wskaźniki zachorowalności ciągle rosną, dlatego dane szacunkowe mówią, że w najbliższych latach będzie to najczęściej występujący nowotwór u mężczyzn w Polsce i prawdopodobnie wyprzedzi obecnie najczęściej występującego raka płuca.  Wznowa raka prostaty po leczeniu radykalnym może nawet dotyczyć ponad 50% u chorych w grupie wysokiego ryzyka i najczęściej manifestuje w postaci wzrostu stężenia antygenu sterczowego PSA (z ang. Prostate Specific Antigen). Badanie PET-CT z zastosowaniem najpopularniejszego znacznika   fluror-18-dezoksy-glukozy (18F-FDG) ma słabą czułość w badaniu raka gruczołowego prostaty, dlatego jest rzadko stosowany w tym rozpoznaniu.  Obecnie najczęściej stosowanym znacznikiem w diagnostyce rak prostaty w Polsce jest 11C – cholina, ale jej czułość przy stężeniu PSA poniżej 1 ng/ml nie jest dostatecznie wysoka. Pacjenci coraz częściej są poddawani badaniu PET- CT ze znakowanym galem 68 (68Ga) inhibitorem sterczowego antygenu błonowego (PSMA  z ang. prostate specific membrane antygen)  lub z 18-F- fluorocyclobutane-1-carboxilic acid fluciclovine (FACBC z ang. fluxiclovine), które dają możliwość zlokalizowania wznowy raka prostaty  w bardzo wczesnym stadium, gdy wartość PSA jest bardzo niska (poniżej 1 ng/ml). Ponadto czułość i specyficzność badania PET-CT z zastosowaniem znacznika 68Ga-PSMA jest bardzo wysoka mimo prowadzonego leczenia antyandrogenowego,  jest jednym z najbardziej obiecujących znaczników w badaniu PET.
https://doi.org/10.21641/los.2019.4.16.150
PDF (Język Polski)

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin [Internet]. 2017 Jan [cited 2019 May 11];67(1):7–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28055103
2. Wojciechowska U, Didkowska J. Zachorowania i zgony na nowotwory złośliwe w Polsce. Krajowy Rejestr Nowotworów, Centrum Onkologii - Instytut im. Marii Skłodowskiej - Curie. [Internet]. 2015 [cited 2018 May 26]. Available from: http://onkologia.org.pl/raporty/
3. Lee RJ, Armstrong AJ, Victor AD, Davis BJ, Dorff T, Eastham JA, et al. NCCN Guidelines Prostate Cancer Version 4.2018. 2018.
4. Burchardt W, Burchardt E. Praca poglądowa / Review paper Zastosowanie brachyterapii HDR u chorych z rakiem jelita grubego w leczeniu choroby oligometastatycznej w wątrobie – przegląd technik i wskazań . Use of HDR brachytherapy in patients with colorectal cancer in the. Zesz Nauk WCO, Lett Oncol Sci. 2018;15(3):107–16.
5. Napieralska A, Miszczyk L, Tukiendorf A, Stąpór-Fudzińska M. The Results of Treatment of Prostate Cancer Bone Metastases after CyberKnife Radiosurgery. Ortop Traumatol Rehabil [Internet]. 2014 Jul 3 [cited 2019 May 11];16(3):339–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25058109
6. Burchardt W, Skowronek J. Time to PSA rise differentiates the PSA bounce after HDR and LDR brachytherapy of prostate cancer. J Contemp Brachytherapy. 2018;10(1):1–9.
7. O’ Doherty J, McGowan DR, Abreu C, Barrington S. Effect of Bayesian-penalized likelihood reconstruction on [13N]-NH3 rest perfusion quantification. J Nucl Cardiol [Internet]. 2017 Feb 19 [cited 2019 May 11];24(1):282–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27435278
8. Ackerstaff E, Pflug BR, Nelson JB, Bhujwalla ZM. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res [Internet]. 2001 May 1 [cited 2019 May 11];61(9):3599–603. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11325827
9. Janardhan S, Srivani P, Sastry GN. Choline kinase: an important target for cancer. Curr Med Chem [Internet]. 2006;13(10):1169–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16719778
10. Müller SA, Holzapfel K, Seidl C, Treiber U, Krause BJ, Senekowitsch-Schmidtke R. Characterization of choline uptake in prostate cancer cells following bicalutamide and docetaxel treatment. Eur J Nucl Med Mol Imaging [Internet]. 2009 Sep 8 [cited 2019 May 11];36(9):1434–42. Available from: http://link.springer.com/10.1007/s00259-009-1117-x
11. Lima AR, Bastos M de L, Carvalho M, Guedes de Pinho P. Biomarker Discovery in Human Prostate Cancer: an Update in Metabolomics Studies. Transl Oncol [Internet]. 2016 Aug 1 [cited 2019 May 11];9(4):357–70. Available from: https://www.sciencedirect.com/science/article/pii/S1936523316300511
12. Evangelista L, Zattoni F, Guttilla A, Saladini G, Zattoni F, Colletti PM, et al. Choline PET or PET/CT and Biochemical Relapse of Prostate Cancer. Clin Nucl Med [Internet]. 2013 May [cited 2019 May 11];38(5):305–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23486334
13. Fanti S, Minozzi S, Castellucci P, Balduzzi S, Herrmann K, Krause BJ, et al. PET/CT with 11C-choline for evaluation of prostate cancer patients with biochemical recurrence: meta-analysis and critical review of available data. Eur J Nucl Med Mol Imaging [Internet]. 2016 Jan 9 [cited 2019 May 11];43(1):55–69. Available from: http://link.springer.com/10.1007/s00259-015-3202-7
14. Mitchell CR, Lowe VJ, Rangel LJ, Hung JC, Kwon ED, Karnes RJ. Operational Characteristics of 11C-Choline Positron Emission Tomography/Computerized Tomography for Prostate Cancer with Biochemical Recurrence After Initial Treatment. J Urol [Internet]. 2013 Apr 1 [cited 2019 May 11];189(4):1308–13. Available from: https://www.sciencedirect.com/science/article/pii/S0022534712053578
15. Schwenck J, Rempp H, Reischl G, Kruck S, Stenzl A, Nikolaou K, et al. Comparison of 68Ga-labelled PSMA-11 and 11C-choline in the detection of prostate cancer metastases by PET/CT. Eur J Nucl Med Mol Imaging [Internet]. 2017 Jan 24 [cited 2019 May 11];44(1):92–101. Available from: http://link.springer.com/10.1007/s00259-016-3490-6
16. Richter JA, Rodríguez M, Rioja J, Peñuelas I, Martí-Climent J, Garrastachu P, et al. Dual Tracer 11C-Choline and FDG-PET in the Diagnosis of Biochemical Prostate Cancer Relapse After Radical Treatment. Mol Imaging Biol [Internet]. 2010 Apr 19 [cited 2019 May 11];12(2):210–7. Available from: http://link.springer.com/10.1007/s11307-009-0243-y
17. Castellucci P, Fuccio C, Nanni C, Santi I, Rizzello A, Lodi F, et al. Influence of trigger PSA and PSA kinetics on 11C-Choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med [Internet]. 2009 Sep 1 [cited 2019 May 11];50(9):1394–400. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19690023
18. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res [Internet]. 1997 Jan [cited 2019 May 11];3(1):81–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9815541
19. Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer [Internet]. 1998 Jun 1 [cited 2019 May 11];82(11):2256–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9610707
20. Eder M, Schäfer M, Bauder-Wüst U, Hull WE, Wängler C, Mier W, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem [Internet]. 2012 Apr 18 [cited 2019 May 11];23(4):688–97. Available from: http://pubs.acs.org/doi/10.1021/bc200279b
21. Savir-Baruch B, Zanoni L, Schuster DM. Imaging of Prostate Cancer Using Fluciclovine [Internet]. Vol. 45, Urologic Clinics of North America. Elsevier; 2018 [cited 2019 May 11]. p. 489–502. Available from: https://www.sciencedirect.com/science/article/pii/S1556859816301341
22. Ren J, Yuan L, Wen G, Yang J. The value of anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid PET/CT in the diagnosis of recurrent prostate carcinoma: a meta-analysis. Acta radiol [Internet]. 2016 Apr 22 [cited 2019 May 11];57(4):487–93. Available from: http://journals.sagepub.com/doi/10.1177/0284185115581541
23. Odewole OA, Tade FI, Nieh PT, Savir-Baruch B, Jani AB, Master VA, et al. Recurrent prostate cancer detection with anti-3-[18F]FACBC PET/CT: comparison with CT. Eur J Nucl Med Mol Imaging [Internet]. 2016 Sep 18 [cited 2019 May 11];43(10):1773–83. Available from: http://link.springer.com/10.1007/s00259-016-3383-8
24. Schuster DM, Nieh PT, Jani AB, Amzat R, Bowman FD, Halkar RK, et al. Anti-3-[18F]FACBC Positron Emission Tomography-Computerized Tomography and 111In-Capromab Pendetide Single Photon Emission Computerized Tomography-Computerized Tomography for Recurrent Prostate Carcinoma: Results of a Prospective Clinical Trial. J Urol [Internet]. 2014 May 1 [cited 2019 May 11];191(5):1446–53. Available from: https://www.sciencedirect.com/science/article/pii/S0022534713056826
25. Bach-Gansmo T, Nanni C, Nieh PT, Zanoni L, Bogsrud TV, Sletten H, et al. Multisite Experience of the Safety, Detection Rate and Diagnostic Performance of Fluciclovine (18F) Positron Emission Tomography/Computerized Tomography Imaging in the Staging of Biochemically Recurrent Prostate Cancer. J Urol [Internet]. 2017 Mar 1 [cited 2019 May 11];197(3):676–83. Available from: https://www.sciencedirect.com/science/article/pii/S002253471631518X
26. Nanni C, Zanoni L, Pultrone C, Schiavina R, Brunocilla E, Lodi F, et al. 18F-FACBC (anti1-amino-3-18F-fluorocyclobutane-1-carboxylic acid) versus 11C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging [Internet]. 2016 Aug 10 [cited 2019 May 11];43(9):1601–10. Available from: http://link.springer.com/10.1007/s00259-016-3329-1
27. Morigi JJ, Stricker PD, van Leeuwen PJ, Tang R, Ho B, Nguyen Q, et al. Prospective Comparison of 18F-Fluoromethylcholine Versus 68Ga-PSMA PET/CT in Prostate Cancer Patients Who Have Rising PSA After Curative Treatment and Are Being Considered for Targeted Therapy. J Nucl Med [Internet]. 2015 Aug 1 [cited 2019 May 11];56(8):1185–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26112024
28. Nanni C, Schiavina R, Brunocilla E, Borghesi M, Ambrosini V, Zanoni L, et al. 18F-FACBC Compared With 11C-Choline PET/CT in Patients With Biochemical Relapse After Radical Prostatectomy: A Prospective Study in 28 Patients. Clin Genitourin Cancer [Internet]. 2014 Apr 1 [cited 2019 May 11];12(2):106–10. Available from: https://www.sciencedirect.com/science/article/pii/S155876731300205X
29. Taneja SS. Imaging in the diagnosis and management of prostate cancer. Rev Urol [Internet]. 2004 [cited 2019 May 11];6(3):101–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16985590
30. Evans JD, Jethwa KR, Ost P, Williams S, Kwon ED, Lowe VJ, et al. Prostate cancer–specific PET radiotracers: A review on the clinical utility in recurrent disease. Pract Radiat Oncol [Internet]. 2018 Jan [cited 2019 May 11];8(1):28–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29037965
Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Downloads

Download data is not yet available.