The role of the immune system in pathogenesis and progression of head and neck squamous cell carcinoma
PDF (Język Polski)

Keywords

immunotherapy
head and neck squamous cel carcinoma
cancer therapy

How to Cite

Maćkowska, N., Sobecka, A., Golusiński, W., & Suchorska, W. M. (2019). The role of the immune system in pathogenesis and progression of head and neck squamous cell carcinoma. Letters in Oncology Science, 17(2), 8-14. https://doi.org/10.21641/los.2019.17.2.152

Abstract

Head and neck squamous cell carcinoma (HNSCC) takes origin from squamous cells of mucous membranes of the mouth, nose and throat. Despite significant advances in conventional therapies, the 5-year progression-free survival rate in patients with locally advanced HNSCC HPV (-) still does not exceed 50%.  Low survival rate in combination with high toxicity of used therapies underline the necessity of introducing new therapeutic strategies. Current research confirms that the immune system plays a key role in the pathogenesis of HNSCC. Better understanding of molecular mechanisms responsible for the immune evasion of cancer cells and exact investigation of molecular pathways responsible for HNSCC development  could help to develop more effective therapies. Considering the fact that in HNSCC course there are significant changes in the molecular mechanisms of the immune system. In this review we summarize the role of immune system in immune-surveillance escape of tumour cells
https://doi.org/10.21641/los.2019.17.2.152
PDF (Język Polski)

References

[1] R. J. Sanderson i J. A. Ironside, “Squamous cell carcinomas of the head and neck,” BMJ, no. 325(7368): 822–827, 2002.
[2] The Cancer Genome Atlas Network, “Comprehensive genomic characterization of head and neck squamous cell carcinomas,” Nature, vol. 517, no. 576–582, 2015.
[3] Y. Suh, I. Amellio, T. Guerrero Urbano i M. Tavassoli, “Clinical update on cancer: molecular oncology of head,” Cell Death and Disease, 2014.
[4] S. M. Thomas i J. R. Grandis, “The current state of head and neck cancer gene therapy.,” Human Gene Therapy, pp. 1565-1575, 2009.
[5] L. Vidal i G. Maura, “Human Papillomavirus in HNSCC: Recognition of a Distinct Disease Type,” Hematology/Oncology Clinics of North America, pp. 1125-1142, 2008.
[6] L. Licitra, G. Zigon, G. Gatta, M.-J. Sanchez, F. Berrino, “Human Papillomavirus in HNSCC: A European Epidemiologic Perspective,” Hematology/Oncology Clinics of North America, pp. 1143-1153, 2008.
[7] J. M. Moskovitz i R. L. Ferris, “Tumor Immunology, Immunotherapy and Its Application to Head and Neck Squamous Cell Carcinoma (HNSCC),” Critical Issues in Head and Neck Oncology, no. 341-355, 2018.
[8] J. D. Moy, J. M. Moskovitz, R. L. Ferris, “Biological mechanisms of immune escape and implications for immunotherapy in head and neck squamous cell carcinoma,” European Journal of Cancer, pp. 152-166, 2017.
[9] A. Jebreel, D. Mistry, D. Loke, “Investigation of interleukin 10, 12 and 18 levels in patients with head and neck cancer.,” J Laryngol Otol, pp. 121:246-252, 2007.
[10] N. M. Moutsopoulos, J. Wen, S. M. Wahl, “TGF-beta and tumors: An ill-fated alliance,” Curr Opin Immunol, pp. 20: 234-240, 2008.
[11] Kuss, B. Hathaway, R. L. Ferris, W. Gooding, T. L. Whiteside, “Decreased absolute counts of T lymphocyte subsets and their relation to disease in squamous cell carcinoma of the head and neck.,” Clinical cancer research, pp. 3755-3762, 2004.
[12] T. Bauernhofer, I. Kuss, B. Henderson, . A. S. Baum, T. L. Whiteside, “Preferential apoptosis of CD56dim natural killer cell subset in patients with cancer.,” European journal of immunology, pp. 119-124, 2003.
[13] S. Dasgupta, M. Bhattacharya-Chatterjee, B. W. O’Malley, S. K. Chatterjee, “Inhibition of NK Cell Activity through TGF-β1 by Down-Regulation of NKG2D in a Murine Model of Head and Neck Cancer,” Journal of Immunology, pp. 5541-5550, 2005.
[14] A. López-Albaitero, J. V. Nayak, T. Ogino, A. Machandia, W. Gooding, . A. B. DeLeo, S. Ferrone, R. L. Ferris, “Role of antigen-processing machinery in the in vitro resistance of squamous cell carcinoma of the head and neck cells to recognition by CTL.,” Journal of Immunology, pp. 3402-3409, 2006.
[15] R. L. Ferris, T. L. Whiteside, S. Ferrone, “Immune Escape Associated with Functional Defects in Antigen-Processing Machinery in Head and Neck Cancer,” Clin Cancer Res, pp. (13) 3890-3895, 2006
[16] J. D. Schoenfeld, “ Immunity in head and neck cancer,” Cancer Immunol Res , pp. 12-17, 2015
[17] M. Frisch , R. J. Biggar, E. A. Engels, J. J. Goedert, AIDS-Cancer Match Registry Study Group, “Association of cancer with AIDSrelated immunosuppression in adults.,” JAMA, pp. 285: 1736-1745, 2001.
[18] A. E. Grulich, M. T. van Leeuwen, M. O. Falster, C. M. Vajdic , “Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis,” Lancet, pp. 370: 59-67, 2007.
[19] S. A. Birkeland, H. H. Storm, L. U. Lamm, L. Barlow, I. Blohmé, B. Forsberg, B. Eklund, O. Fjeldborg, M. Friedberg, l. Frödin, “Cancer risk after renal transplantation in the Nordic countries, 1964-1986,” International Journal of Cancer, pp. 60:183-189, 1995.
[20] V. Varilla , J. Atienza, C. A. Dasanu, “ Immune alterations and immunotherapy prospects in head and neck cancer.,” Expert Opin Biol Ther, pp. 1241-56, 2013.
[21] R. D. Schreiber, L. J. Old, M. J. Smyth, “Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion,” Science, pp. 1565-1570, 2011.
[22] F. Concha-Bravente, R. M. Srivastava, S. Trivedi, Y. Lei, U. Chandran, R. R. Seethala, “Identification of the cell intrinsic and -extrinsic pathways downstream of EGFR and IFNgamma that induce PD-L1 expression in head and neck cancer,” Cancer Res, pp. 1031-43, 2016.
[23] M. Meissner, T. E. Reichert, M. Kunkel, W. Gooding, T. L. Whiteside, S. Ferrone, B. Seliger, “Defects in the Human Leukocyte Antigen Class I Antigen Processing Machinery in Head and Neck Squamous Cell Carcinoma: Association with Clinical Outcome,” Clinical Cancer Research, pp. 2552-60, 2005.
[24] R. L. Ferris, “Immunology and Immunotherapy of Head and Neck Cancer,” Journal of Clinical Oncology, pp. 3293-3304, 2015.
[25] The Cancer Genome Atlas Network, “Comprehensive genomic characterization of head and neck squamous cell carcinomas.,” Nature, pp. 517(7536):576-82, 2015.
[26] A. López-Albaitero, . J. V. Nayak, T. Ogino, A. Machandia, W. Gooding, A. B. DeLeo, S. Ferrone, R. L. Ferris, “Role of antigen-processing machinery in the in vitro resistance of squamous cell carcinoma of the head and neck cells to recognition by CTL.,” J Immunol , pp. 176 (6) 3402-3409, 2006.
[27] C. Badoual, F. Sandoval, H. Pere, S. Hans, A. Gey, N. Merillon, C. Van Ryswick, F. Quintin‐Colonna, P. Bruneval , D. Brasnu, W. H. Fridman, E. Tartour, “Better understanding tumor–host interaction in head and neck cancer to improve the design and development of immunotherapeutic strategies,” Head & Neck, pp. 946-958, 2010.
[28] M. S. Leibowitz, P. A. Filho, S. Ferrone, R. L. Ferris, “Deficiency of activated STAT1 in head and neck cancer cells mediates TAP1-dependent escape from cytotoxic T lymphocytes.,” Cancer Immunol Immunother, pp. 525-535, 2016.
[29] T. Ogino, H. Shigyo, H. Ishii, A. Katayama, N. Miyokawa, Y. Harabuchi, S. Ferrone, “HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker.,” Cancer Res, pp. (18) 9281-9289, 2006.
[30] F. Concha-Benavente, R. M. Srivastava, S. Ferrone, R. L. Ferris, “EGFR-mediated tumor immunoescape: The imbalance between phosphorylated STAT1 and phosphorylated STAT3,” Oncoimmunology, p. 2(12):e27215, 2013.
[31] M. S. Leibowitz, R. M. Srivastava, P. A. Andrade Filho, A. M. Egloff, L. Wang, R. R. Seethala, S. Ferrone, R. L. Ferris, “SHP2 is overexpressed and inhibits pSTAT1-mediated APM component expression, T cell attracting chemokine secretion, and CTL recognition in head and neck cancer cells,” Clin Cancer Res., pp. 19(4):798-808, 2013.
[32] K. Mimura, K. Shiraishi,, A. Mueller,, S. Izawa,, L.-F. Kua, J. So, W.-P. Yong,, H. Fujii, B. Seliger, R. Kiessling, K. Kono, “The MAPK Pathway Is a Predominant Regulator of HLA-A Expression in Esophageal and Gastric Cancer,” The Journal of Immunology, p. 191(12): 6261–6272., 2013.
[33] B. P. Pollack, B. Sapkota, T. V. Cartee, “Epidermal growth factor receptor inhibition augments the expression of MHC class I and II genes.,” Clin Cancer Res., pp. (13):4400-13, 2011.
[34] R. M. Srivastava , S. Trivedi, F. Concha-Benavente , J. Hyun-Bae , L. Wang, R. R. Seethala, B. F. Branstetter, S. Ferrone, R. L. Ferris, “STAT1-Induced HLA Class I Upregulation Enhances Immunogenicity and Clinical Response to Anti-EGFR mAb Cetuximab Therapy in HNC Patients.,” Cancer Immunol Res., pp. (8) 936-45, 2015.
[35] S. Trivedi, F. Concha-Benavente, R. M. Srivastava, H. B. Jie, S. P. Gibson, N. C. Schmitt, R. L. Ferris, “Immune biomarkers of anti-EGFR monoclonal antibody therapy,” Annals of Oncology, pp. 40-47, 2015.
[36] E. V. Fletcher , L. Love-Homan, A. Sobhakumari , C. R. Feddersen , A. T. Koch, A. Goel, A. L. Simons, “EGFR inhibition induces proinflammatory cytokines via NOX4 in HNSCC.,” Molecular Cancer Research, pp. (12):1574-84, 2013.
[37] H. von Boehmer i F. Melchers, “Checkpoints in lymphocyte development and autoimmune disease,” Nature Immunology, pp. 14-20, 2010.
[38] K. C. Ohaegbulam, A. Assal, E. Lazar-Molnar, Y. Yao, X. Zang, “Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway,” Trends in Molecular Medicine, pp. 24-33, 2015.
[39] C. Camisaschi, A. De Filippo, V. Beretta, B. Vergani, A. Villa, E. Vergani, “Alternative Activation of Human Plasmacytoid DCs In Vitro and in Melanoma Lesions: Involvement of LAG-3,” Journal of Investigative Dermatology, pp. 1893-1902, 2014.
[40] K. Sakuishi, L. Apetoh, J. M. Sullivan, B. R. Blazar, V. K. Kuchroo, A. C. Anderson, “Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity,” JEM, p. (10): 2187, 2010.
[41] R. Mandal, Y. Senbabaoglu, A. Desrichard, J. J. Havel, M. G. Dalin, N. Riaz, “The head and neck cancer immune landscape and its immunotherapeuticimplications,” JCI Insight, p. 1:e89829.doi:10.1172/jci.insight. 89829, 2016.
[42] P. Baruah, M. Lee, T. Odutoye, P. Williamson, N. Hyde, J. C. Kaski, I. E. Dumitriu, “Decreased levels of alternative co-stimulatory receptors OX40 and 4-1BB characterise T cells from head and neck cancer patients.,” Immunobiology, p. 217(7):669–75, 2012.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Downloads

Download data is not yet available.