Potencjał fukoidyny jako środka wspomagającego w terapii onkologicznej

Main Article Content

Wiktoria Błaszczak
Agnieszka Sobecka
Wojciech Barczak
Wiktoria Maria Suchorska

Abstract

Nowotwory nadal stanowią  jedną z głównych przyczyn śmiertelności w populacji światowej, a długotrwałe ich leczenie jest trudne i wysoce problematyczne, pomimo znacznego pogłębienia wiedzy z zakresu ich biologii. Obecnie wykorzystywane metody terapeutyczne cechują się wysoką toksycznością, tym samym często udaremniając skuteczne wyleczenie i pogarszając jakość życia chorych. Z tego względu wzrasta zainteresowane środkami, które mogłyby wzmocnić skuteczność konwencjonalnej terapii lub ograniczyć występowanie poważnych skutków ubocznych. Przykładem takiej substancji jest fukoidyna - sulfonowany fukan pochodzenia naturalnego, pozyskiwany z alg i brunatnic. Istnieją liczne doniesienia potwierdzające jej efekty terapeutyczne obejmujące właściwości przeciwnowotworowe, przeciwwirusowe oraz immunomodulujące. Poniższa praca zawiera opis efektów terapeutycznych wywoływanych przez fukoidynę wyekstrahowaną z różnych gatunków alg w poszczególnych modelach nowotworów. Praca uwzględnia poznane dotychczas i proponowane mechanizmy indukcji efektów przeciwnowotworowych oraz krytyczną ocenę ograniczeń fukoidyny jako potencjalnego środka wspomagającego w terapii onkologicznej.

Article Details

How to Cite
Błaszczak, W., Sobecka, A., Barczak, W., & Suchorska, W. (2017). Potencjał fukoidyny jako środka wspomagającego w terapii onkologicznej. Letters in Oncology Science, 14(4), 86-95. https://doi.org/10.21641/los.14.4.39
Section
Review papers
Author Biography

Wiktoria Maria Suchorska

Pracownia Radiobiologii, Zakład Fizyki Medycznej, Wielkopolskie Centrum Onkologii, ul. Garbary 15, 61-866 Poznań;Katedra i Zakład Elektroradiologii, Uniwersytet Medyczny w Poznaniu, ul. Garbary 15, 61-866 Poznań

References

1. Cancer [Internet]. World Health Organization. World Health Organization; [cited 2017Apr25]. Available from: http://www.who.int/mediacentre/factsheets/fs297/en/

2. Types of Cancer Treatment [Internet]. National Cancer Institute. National Institutes of Health; [cited 2017Apr25]. Available from: https://www.cancer.gov/about-cancer/treatment/types

3. Cleeland CS, Allen JD, Roberts S a, Brell JM, Giralt S a, Khakoo AY, et al. Reducing the toxicity of cancer therapy: recognizing needs, taking action. Nat Rev Clin Oncol 2012; 9:1–8.
4. Berteau O, Mulloy B. Sulfated fucans, fresh perspectives: Structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 2003; 13:29–40.

5. Kannan RRR, Arumugam R, Anantharaman P. Pharmaceutical potential of a fucoidan-like sulphated polysaccharide isolated from Halodule pinifolia. Int J Biol Macromol 2013; 62:30–34.

6. Atashrazm F, Lowenthal RM, Woods GM, Holloway AF, Dickinson JL. Fucoidan and cancer: A multifunctional molecule with anti-tumor potential. Mar Drugs 2015; 13:2327–2346.

7. Yang C, Chung D, Shin IS, Lee H, Kim J, Lee Y, et al. Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. Int J Biol Macromol 2008; 43:433–437.

8. Cho ML, Lee BY, You S. Relationship between oversulfation and conformation of low and high molecular weight fucoidans and evaluation of their in vitro anticancer activity. Molecules 2011; 16:291–297.

9. Fitton JH, Stringer DN, Karpiniec SS. Therapies from fucoidan: An update. Mar Drugs 2015; 13:5920–5946.

10. Kwak JY. Fucoidan as a marine anticancer agent in preclinical development. Mar Drugs 2014; 12:851–870.

11. Chen S, Zhao Y, Zhang Y, Zhang D. Fucoidan induces cancer cell apoptosis by modulating the endoplasmic reticulum stress cascades. PLoS One 2014; 9(9): e108157.

12. Han Y-S, Lee JH, Lee SH. Antitumor Effects of Fucoidan on Human Colon Cancer Cells via Activation of Akt Signaling. Biomol Ther 2015; 23:225–32.

13. Han MH, Lee DS, Jeong JW, Hong SH, Choi IW, Cha HJ et al Fucoidan Induces ROS-Dependent Apoptosis in 5637 Human Bladder Cancer Cells by Downregulating Telomerase Activity via Inactivation of the PI3K/Akt Signaling Pathway. Drug Dev Res. 2016;

14. Banafa AM, Roshan S, Liu YY, Chen HJ, Chen MJ, Yang GX, et al. Fucoidan induces G1 phase arrest and apoptosis through caspases-dependent pathway and ROS induction in human breast cancer MCF-7 cells. J Huazhong Univ Sci Technol - Med Sci 2013; 33:717–724.

15. Liu F, Luo G, Xiao Q, Chen L, Luo X, Lv J, et al. Fucoidan inhibits angiogenesis induced by multiple myeloma cells. Oncol Rep 2016; 36:1963–1972.

16. Chen M-C, Hsu W-L, Hwang P-A, Chou T-C. Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia. Mar Drugs 2015; 13:4436–4451.

17. Oh B, Kim J, Lu W, Rosenthal D. Anticancer effect of fucoidan in combination with tyrosine kinase inhibitor lapatinib. Evidence-based Complement Altern Med 2014; 865375.

18. Thakur V, Lu J, Roscilli G, Aurisicchio L, Cappelletti M. The natural compound fucoidan from New Zealand Undaria pinnatifida synergizes with the ERBB inhibitor lapatinib enhancing melanoma growth inhibition Fucoidan extracted from New Zealand. Oncotarget 2017; 8(11): 17887–17896.

19. Yan M De, Yao CJ, Chow JM, Chang CL, Hwang PA, Chuang SE, et al. Fucoidan elevates MicroRNA-29b to regulate DNMT3B-MTSS1 axis and inhibit EMT in human hepatocellular carcinoma cells. Mar Drugs 2015; 13:6099–6116.

20. Taipei Medical University WanFang Hospital; Esther Prats, Taipei Medical University WanFang Hospital. Fucoidan Improves the Metabolic Profiles of Patients With Non-alcoholic Fatty Liver Disease (NAFLD). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2017 Apr 25]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT02875392. NLM Identifier: NCT02875392.

21. Lean QY, Eri RD, Fitton JH, Patel RP, Gueven N. Fucoidan Extracts Ameliorate Acute Colitis. PLoS One 2015; 10:e0128453.

22. Myers SP, Mulder AM, Baker DG, Robinson SR, Rolfe MI, Brooks L, et al. Effects of fucoidan from Fucus vesiculosus in reducing symptoms of osteoarthritis: A randomized placebo-controlled trial. Biol Targets Ther 2016; 10:81–88.

23. Negishi H, Mori M, Mori H, Yamori Y. Supplementation of elderly Japanese men and women with fucoidan from seaweed increases immune responses to seasonal influenza vaccination. J Nutr 2013; 143:1794–8.

24. Ikeguchi M, Yamamoto M, Arai Y, Maeta Y, Ashida K, Katano K, et al. Fucoidan reduces the toxicities of chemotherapy for patients with unresectable advanced or recurrent colorectal cancer. Oncol Lett 2011; 2:319–322.

25. Burz C, Berindan-Neagoe I, Balacescu O, Irimie A. Apoptosis in cancer: key molecular signaling pathways and therapy targets. Acta Oncol 2011; 48:811–821.

26. Steinman RM, Turley S, Mellman I, Inaba K. The Induction of Tolerance by Dendritic Cells That Have Captured Apoptotic Cells. J Exp Med 2000; 191:411–416.

27. Brown JM, Attardi LD. The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 2005; 5:231–237.

28. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57–70.

29. Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L, et al. Molecular characteristics of immunogenic cancer cell death. Cell Death Differ 2008; 15:3–12.

30. Kim EJ, Park SY, Lee J-Y, Park JHY. Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol 2010; 10:96.

31. Xue M, Ge Y, Zhang J, Wang Q, Hou L, Liu Y, et al. Anticancer properties and mechanisms of fucoidan on mouse breast cancer in vitro and in Vivo. PLoS One 2012; 7:3–11.

32. Hyun J-H, Kim S-C, Kang J-I, Kim MK, Boo HJ, Kwon JM et al. Apoptosis inducing activity of fucoidan in HCT-15 colon carcinoma cells. Biol Pharm Bull 2009; 32:1760–1764.

33. Aisa Y, Miyakawa Y, Nakazato T, Shibata H, Saito K, Ikeda Y, et al. Fucoidan induces apoptosis of human HS-Sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways. Am J Hematol 2005; 78:7–14.

34. Ale MT, Maruyama H, Tamauchi H, Mikkelsen JD, Meyer AS. Fucose-containing sulfated polysaccharides from brown seaweeds inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro. Mar Drugs 2011; 9:2605–2621.

35. Ale MT, Maruyama H, Tamauchi H, Mikkelsen JD, Meyer AS. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int J Biol Macromol 2011; 49:331–336.

36. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002; 2:727–739.

37. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407:249–257.

38. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell 2011; 146:873–887.

39. Relf M, LeJeune S, Scott P, Fox S, Smith K. Expression of the Angiogenic Factors Vascular Endothelial Cell Growth Factor, Acidic and Basic Fibroblast Growth Factor, Tumor Growth Factor ß -1, Platelet-derived Endothelial Cell Growth Factor, Placenta Growth Factor, and Pleiotrophin in Human Primary B. Cancer Res 1997; 963–969.

40. Ioachim E, Michael M, Salmas M, Michael MM, Stavropoulos NE, Malamou-Mitsi V. Hypoxia-inducible factors HIF-1?? and HIF-2?? expression in bladder cancer and their associations with other angiogenesis-related proteins. Urol Int 2006; 77:255–263.

41. Narazaki M, Segarra M, Tosato G. Sulfated polysaccharides identified as inducers of neuropilin-1 internalization and functional inhibition of VEGF 165 and semaphorin3A. Blood 2008; 111:4126–4136.

42. Lunt S, Chaudary N, Hill R. The tumor microenvironment and metastatic disease. Clin Exp Metastasis 2009; 26:19–34.

43. Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 2000; 10:415–433.

44. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006; 25:9–34.

45. Hojilla CV, Mohammed FF, Khokha R. Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer 2003; 89:1817–1821.

46. Van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutat Res - Rev Mutat Res 2011; 728:23–34.

47. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144:646–674.

48. Wang P, Liu Z, Liu X, Teng H, Zhang C, Hou L, et al. Anti-metastasis effect of fucoidan from Undaria pinnatifida sporophylls in mouse hepatocarcinoma Hca-F cells. PLoS One 2014; 9:2–9.

49. Teng H, Yang Y, Wei H, Liu Z, Liu Z, Ma Y, et al. Fucoidan Suppresses Hypoxia-Induced Lymphangiogenesis and Lymphatic Metastasis in Mouse Hepatocarcinoma. Mar Drugs 2015; 13:3514–3530.

50. Hsu HY, Lin TY, Hwang PA, Tseng LM, Chen RH, Tsao SM, et al. Fucoidan induces changes in the epithelial to mesenchymal transition and decreases metastasis by enhancing ubiquitin-dependent tgfß receptor degradation in breast cancer. Carcinogenesis 2013; 34:874–884.

51. Huang TH, Chiu YH, Chan YL, Chiu YH, Wang H, Huang KC, et al. Prophylactic administration of fucoidan represses cancer metastasis by inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in Lewis tumor-bearing mice. Mar Drugs 2015; 13:1882–1900.

52. Blaszczak W, Barczak W, Wegner A, Golusinski W, Suchorska WM. Clinical value of monoclonal antibodies and tyrosine kinase inhibitors in the treatment of head and neck squamous cell carcinoma. Med Oncol 2017; 34:60.

53. Oh B, Kim J, Lu W, Rosenthal D. Anticancer effect of fucoidan in combination with tyrosine kinase inhibitor lapatinib. Evid-based Complement Altern Med 2014; 865375.

54. Zhang Z, Teruya K, Yoshida T, Eto H, Shirahata S. Fucoidan extract enhances the anti-cancer activity of chemotherapeutic agents in MDA-MB-231 and MCF-7 breast cancer cells. Mar Drugs 2013; 11:81–98.