Abstract
Breast cancer is the most common malignancy among women and a leading cause of cancer-related mortality. Despite significant advances in detection and treatment, its molecular heterogeneity poses challenges in achieving accurate diagnosis and personalized therapies. Traditional diagnostic methods, based primarily on histopathology and genomics, fail to capture the full complexity of the disease. In response, multi-omics approaches, integrating genomics, transcriptomics, proteomics, and metabolomics, are emerging as powerful tools for comprehensive cancer profiling. These advanced methodologies enable the identification of novel biomarkers, improve diagnostic accuracy, and facilitate patient stratification for tailored treatments. This review explores the role of multi-omics in breast cancer diagnosis, emphasizing recent technological advancements and key findings that enhance early detection, prognosis, and treatment strategies. By providing a more complete molecular picture, multi-omics is paving the way for precision medicine, offering the potential for more effective and personalized breast cancer therapies.
References
1. Beaver JA, Jelovac D, Balukrishna S, Cochran RL, Croessmann S, Zabransky DJ, et al. Detection of Cancer DNA in Plasma of Patients with Early-Stage Breast Cancer. Clin Cancer Res [Internet]. 2014 May 15;20(10):2643–50. Available from: https://aacrjournals.org/clincancerres/article/20/10/2643/78429/Detection-of-Cancer-DNA-in-Plasma-of-Patients-with
2. Garcia-Murillas I, Abbott CW, Cutts RJ, Boyle SM, Pugh J, Keough KC, et al. Whole genome sequencing-powered ctDNA sequencing for breast cancer detection. Ann Oncol [Internet]. 2025 Feb; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0923753425000535
3. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature [Internet]. 2000 Aug 17;406(6797):747–52. Available from: https://www.nature.com/articles/35021093
4. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature [Internet]. 2016 Jun 2;534(7605):47–54. Available from: https://www.nature.com/articles/nature17676
5. Tung NM, Garber JE. BRCA1/2 testing: therapeutic implications for breast cancer management. Br J Cancer [Internet]. 2018 Jul 5;119(2):141–52. Available from: https://www.nature.com/articles/s41416-018-0127-5
6. Kufel-Grabowska J, Wasąg B. Diagnosis and treatment of patients with breast cancer and mutation in the BRCA1/2 genes. Oncol Clin Pract [Internet]. 2024 Jun 25;20(3):222–8. Available from: https://journals.viamedica.pl/oncology_in_clinical_practice/article/view/95888
7. Ragupathi A, Singh M, Perez AM, Zhang D. Targeting the BRCA1/2 deficient cancer with PARP inhibitors: Clinical outcomes and mechanistic insights. Front Cell Dev Biol [Internet]. 2023 Mar 22;11. Available from: https://www.frontiersin.org/articles/10.3389/fcell.2023.1133472/full
8. Choi JH, Yu J, Jung M, Jekal J, Kim KS, Jung SU. Prognostic significance of TP53 and PIK3CA mutations analyzed by next-generation sequencing in breast cancer. Medicine (Baltimore) [Internet]. 2023 Sep 22;102(38):e35267. Available from: https://journals.lww.com/10.1097/MD.0000000000035267
9. Irminger-Finger I, Soriano J V., Vaudan G, Montesano R, Sappino A-P. In Vitro Repression of Brca1-associated RING Domain Gene, Bard1 , Induces Phenotypic Changes in Mammary Epithelial Cells. J Cell Biol [Internet]. 1998 Nov 30;143(5):1329–39. Available from: https://rupress.org/jcb/article/143/5/1329/29439/In-Vitro-Repression-of-Brca1-associated-RING
10. Meijers-Heijboer H, Wasielewski M, Wagner A, Hollestelle A, Elstrodt F, van den Bos R, et al. The CHEK2 1100delC Mutation Identifies Families with a Hereditary Breast and Colorectal Cancer Phenotype. Am J Hum Genet [Internet]. 2003 May;72(5):1308–14. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002929707606594
11. The CHEK2 Breast Cancer Case-Control Consortium. CHEK2*1100delC and Susceptibility to Breast Cancer: A Collaborative Analysis Involving 10,860 Breast Cancer Cases and 9,065 Controls from 10 Studies. Am J Hum Genet [Internet]. 2004 Jun;74(6):1175–82. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002929707627049
12. Zhong D, Morikawa A, Guo L, Colpaert C, Xiong L, Nassar A, et al. Homozygous deletion of SMAD4 in breast cancer cell lines and invasive ductal carcinomas. Cancer Biol Ther [Internet]. 2006 Jun 27;5(6):601–7. Available from: http://www.tandfonline.com/doi/abs/10.4161/cbt.5.6.2660
13. Liu N, Yu C, Shi Y, Jiang J, Liu Y. SMAD4 expression in breast ductal carcinoma correlates with prognosis. Oncol Lett [Internet]. 2015 Sep;10(3):1709–15. Available from: https://www.spandidos-publications.com/10.3892/ol.2015.3442
14. Tufail M, Hu J-J, Liang J, He C-Y, Wan W-D, Huang Y-Q, et al. Predictive, preventive, and personalized medicine in breast cancer: targeting the PI3K pathway. J Transl Med [Internet]. 2024 Jan 3;22(1):15. Available from: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-023-04841-w
15. Moyer CL, Ivanovich J, Gillespie JL, Doberstein R, Radke MR, Richardson ME, et al. Rare BRIP1 Missense Alleles Confer Risk for Ovarian and Breast Cancer. Cancer Res [Internet]. 2020 Feb 15;80(4):857–67. Available from: https://aacrjournals.org/cancerres/article/80/4/857/646300/Rare-BRIP1-Missense-Alleles-Confer-Risk-for
16. Cognetti F, Biganzoli L, De Placido S, Mastro L del, Masetti R, Naso G, et al. Multigene tests for breast cancer: the physician’s perspective. Oncotarget [Internet]. 2021 Apr 27;12(9):936–47. Available from: https://www.oncotarget.com/lookup/doi/10.18632/oncotarget.27948
17. Ji J-H, Ahn SG, Yoo Y, Park S-Y, Kim J-H, Jeong J-Y, et al. Prediction of a Multi-Gene Assay (Oncotype DX and Mammaprint) Recurrence Risk Group Using Machine Learning in Estrogen Receptor-Positive, HER2-Negative Breast Cancer—The BRAIN Study. Cancers (Basel) [Internet]. 2024 Feb 13;16(4):774. Available from: https://www.mdpi.com/2072-6694/16/4/774
18. Van Bockstal MR, Agahozo MC, van Marion R, Atmodimedjo PN, Sleddens HFBM, Dinjens WNM, et al. Somatic mutations and copy number variations in breast cancers with heterogeneous HER2 amplification. Mol Oncol [Internet]. 2020 Apr 5;14(4):671–85. Available from: https://febs.onlinelibrary.wiley.com/doi/10.1002/1878-0261.12650
19. Jin J, Li B, Cao J, Li T, Zhang J, Cao J, et al. Analysis of clinical features, genomic landscapes and survival outcomes in HER2-low breast cancer. J Transl Med [Internet]. 2023 Jun 1;21(1):360. Available from: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-023-04076-9
20. Yagisawa M, Taniguchi H, Satoh T, Kadowaki S, Sunakawa Y, Nishina T, et al. Trastuzumab Deruxtecan in Advanced Solid Tumors With Human Epidermal Growth Factor Receptor 2 Amplification Identified by Plasma Cell-Free DNA Testing: A Multicenter, Single-Arm, Phase II Basket Trial. J Clin Oncol [Internet]. 2024 Nov 10;42(32):3817–25. Available from: https://ascopubs.org/doi/10.1200/JCO.23.02626
21. Moelans CB, de Weger RA, Monsuur HN, Vijzelaar R, van Diest PJ. Molecular profiling of invasive breast cancer by multiplex ligation-dependent probe amplification-based copy number analysis of tumor suppressor and oncogenes. Mod Pathol [Internet]. 2010 Jul;23(7):1029–39. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0893395222026916
22. Cha S, Lee E, Won H-H. Comprehensive characterization of distinct genetic alterations in metastatic breast cancer across various metastatic sites. npj Breast Cancer [Internet]. 2021 Jul 16;7(1):93. Available from: https://www.nature.com/articles/s41523-021-00303-y
23. Thakur C, Qiu Y, Fu Y, Bi Z, Zhang W, Ji H, et al. Epigenetics and environment in breast cancer: New paradigms for anti-cancer therapies. Front Oncol [Internet]. 2022 Sep 15;12. Available from: https://www.frontiersin.org/articles/10.3389/fonc.2022.971288/full
24. Prabhu KS, Sadida HQ, Kuttikrishnan S, Junejo K, Bhat AA, Uddin S. Beyond genetics: Exploring the role of epigenetic alterations in breast cancer. Pathol - Res Pract [Internet]. 2024 Feb;254:155174. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0344033824000852
25. Sebova K, Zmetakova I, Bella V, Kajo K, Stankovicova I, Kajabova V, et al. RASSF1A and CDH1 hypermethylation as potential epimarkers in breast cancer. Cancer Biomarkers [Internet]. 2012 Jan 21;10(1):13–26. Available from: https://journals.sagepub.com/doi/full/10.3233/CBM-2012-0230
26. Xiao C-K, Ren Y, Chen Q, Yang Y, Tang L, Xu L, et al. H4K20me3, H3K4me2 and H3K9me2 mediate the effect of ER on prognosis in breast cancer. Epigenetics [Internet]. 2024 Dec 31;19(1). Available from: https://www.tandfonline.com/doi/full/10.1080/15592294.2024.2343593
27. Batra RN, Lifshitz A, Vidakovic AT, Chin S-F, Sati-Batra A, Sammut S-J, et al. DNA methylation landscapes of 1538 breast cancers reveal a replication-linked clock, epigenomic instability and cis-regulation. Nat Commun [Internet]. 2021 Sep 13;12(1):5406. Available from: https://www.nature.com/articles/s41467-021-25661-w
28. Krug K, Jaehnig EJ, Satpathy S, Blumenberg L, Karpova A, Anurag M, et al. Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell [Internet]. 2020 Nov;183(5):1436-1456.e31. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867420314008
29. Ruggles K V., Krug K, Wang X, Clauser KR, Wang J, Payne SH, et al. Methods, Tools and Current Perspectives in Proteogenomics. Mol Cell Proteomics [Internet]. 2017 Jun;16(6):959–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S153594762032363X
30. Mertins P, Mani DR, Ruggles K V., Gillette MA, Clauser KR, Wang P, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature [Internet]. 2016 Jun 25;534(7605):55–62. Available from: https://www.nature.com/articles/nature18003
31. Mertins P, Tang LC, Krug K, Clark DJ, Gritsenko MA, Chen L, et al. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat Protoc [Internet]. 2018 Jul;13(7):1632–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29988108
32. Horm TM, Schroeder JA. MUC1 and metastatic cancer. Cell Adh Migr [Internet]. 2013 Mar 27;7(2):187–98. Available from: http://www.tandfonline.com/doi/abs/10.4161/cam.23131
33. Press MF, Bernstein L, Thomas PA, Meisner LF, Zhou JY, Ma Y, et al. HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J Clin Oncol [Internet]. 1997 Aug;15(8):2894–904. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9256133
34. Gaughran G, Aggarwal N, Shadbolt B, Stuart-Harris R. The Utility of the Tumor Markers CA15.3, CEA, CA-125 and CA19.9 in Metastatic Breast Cancer. Breast Cancer Manag [Internet]. 2020 Dec 18;9(4). Available from: https://www.tandfonline.com/doi/full/10.2217/bmt-2020-0015
35. Jeon Y, Lee G, Jeong H, Gong G, Kim J, Kim K, et al. Proteomic analysis of breast cancer based on immune subtypes. Clin Proteomics [Internet]. 2024 Dec 29;21(1):17. Available from: https://clinicalproteomicsjournal.biomedcentral.com/articles/10.1186/s12014-024-09463-y
36. Asleh K, Negri GL, Spencer Miko SE, Colborne S, Hughes CS, Wang XQ, et al. Proteomic analysis of archival breast cancer clinical specimens identifies biological subtypes with distinct survival outcomes. Nat Commun [Internet]. 2022 Feb 16;13(1):896. Available from: https://www.nature.com/articles/s41467-022-28524-0
37. Wu H-C, Lai Y, Liao Y, Deyssenroth M, Miller GW, Santella RM, et al. Plasma metabolomics profiles and breast cancer risk. Breast Cancer Res [Internet]. 2024 Oct 9;26(1):141. Available from: https://breast-cancer-research.biomedcentral.com/articles/10.1186/s13058-024-01896-5
38. Kanaan YM, Sampey BP, Beyene D, Esnakula AK, Naab TJ, Ricks-Santi LJ, et al. Metabolic profile of triple-negative breast cancer in African-American women reveals potential biomarkers of aggressive disease. Cancer Genomics Proteomics [Internet]. 2014;11(6):279–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25422359
39. Hilvo M, Denkert C, Lehtinen L, Müller B, Brockmöller S, Seppänen-Laakso T, et al. Novel Theranostic Opportunities Offered by Characterization of Altered Membrane Lipid Metabolism in Breast Cancer Progression. Cancer Res [Internet]. 2011 May 1;71(9):3236–45. Available from: https://aacrjournals.org/cancerres/article/71/9/3236/575811/Novel-Theranostic-Opportunities-Offered-by
40. Bel’skaya L V., Gundyrev IA, Solomatin D V. The Role of Amino Acids in the Diagnosis, Risk Assessment, and Treatment of Breast Cancer: A Review. Curr Issues Mol Biol [Internet]. 2023 Sep 13;45(9):7513–37. Available from: https://www.mdpi.com/1467-3045/45/9/474
41. Budczies J, Pfitzner BM, Györffy B, Winzer K, Radke C, Dietel M, et al. Glutamate enrichment as new diagnostic opportunity in breast cancer. Int J Cancer [Internet]. 2015 Apr 4;136(7):1619–28. Available from: https://onlinelibrary.wiley.com/doi/10.1002/ijc.29152
42. Zeleznik OA, Balasubramanian R, Ren Y, Tobias DK, Rosner BA, Peng C, et al. Branched-Chain Amino Acids and Risk of Breast Cancer. JNCI cancer Spectr [Internet]. 2021 Oct;5(5). Available from: http://www.ncbi.nlm.nih.gov/pubmed/34585062
43. Jové M, Collado R, Quiles JL, Ramírez-Tortosa M-C, Sol J, Ruiz-Sanjuan M, et al. A plasma metabolomic signature discloses human breast cancer. Oncotarget [Internet]. 2017 Mar 21;8(12):19522–33. Available from: https://www.oncotarget.com/lookup/doi/10.18632/oncotarget.14521
44. Huang S, Chong N, Lewis NE, Jia W, Xie G, Garmire LX. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis. Genome Med [Internet]. 2016 Dec 31;8(1):34. Available from: https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-016-0289-9
45. Bonanomi M, Salmistraro N, Fiscon G, Conte F, Paci P, Bravatà V, et al. Transcriptomics and Metabolomics Integration Reveals Redox-Dependent Metabolic Rewiring in Breast Cancer Cells. Cancers (Basel) [Internet]. 2021 Oct 9;13(20). Available from: http://www.ncbi.nlm.nih.gov/pubmed/34680207
46. Díaz-Beltrán L, González-Olmedo C, Luque-Caro N, Díaz C, Martín-Blázquez A, Fernández-Navarro M, et al. Human Plasma Metabolomics for Biomarker Discovery: Targeting the Molecular Subtypes in Breast Cancer. Cancers (Basel) [Internet]. 2021 Jan 5;13(1). Available from: http://www.ncbi.nlm.nih.gov/pubmed/33466323
47. Mansoor S, Hamid S, Tuan TT, Park J-E, Chung YS. Advance computational tools for multiomics data learning. Biotechnol Adv [Internet]. 2024 Dec;77:108447. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0734975024001411
48. Odenkirk MT, Reif DM, Baker ES. Multiomic Big Data Analysis Challenges: Increasing Confidence in the Interpretation of Artificial Intelligence Assessments. Anal Chem [Internet]. 2021 Jun 8;93(22):7763–73. Available from: https://pubs.acs.org/doi/10.1021/acs.analchem.0c04850
49. Mohr AE, Ortega-Santos CP, Whisner CM, Klein-Seetharaman J, Jasbi P. Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare. Biomedicines [Internet]. 2024 Jul 5;12(7):1496. Available from: https://www.mdpi.com/2227-9059/12/7/1496

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyright (c) 2025 Letters in Oncology Science