Abstrakt
Nowotwory głowy i szyi (HNC, ang. head and neck cancer) stanowią obecnie szóstą najczęściej występującą chorobę nowotworową na Świecie. Każdego roku diagnozuje się ponad pół miliona nowych przypadków zachorowań. Ze względu na dużą różnorodność genetyczną i histologiczną nowotworów głowy i szyi, ich patogeneza opiera się na wielu złożonych procesach obejmujących akumulację zmian zarówno genetycznych, jak i epigenetycznych. Modyfikacje epigenetyczne występujące w nowotworach głowy i szyi obejmują metylację DNA, modyfikacje histonów, aktywność niekodujących RNA oraz metylację RNA. Niektóre zmiany epigenetyczne promują powstawanie i rozwój raka poprzez kontrolowanie mechanizmów ekspresji wielu genów kluczowych dla procesu kancerogenezy. W związku z tym modyfikacje te mogą być wykorzystane jako biomarkery diagnostyczne pacjentów onkologicznych oraz stanowić cele ukierunkowanych terapii przeciwnowotworowych.
Bibliografia
Bray, F.; Ferlay, J.; Soerjomataram, I. Global Cancer Statistics 2018 : GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394-424. doi: 10.3322/caac.21492
Franceschi, S., Talamini, R.; Barra, S.; Barón, A.E.; Negri, E.; Bidoli, E.; Serraino, D.; La Vecchia, C. Smoking and drinking in relation to cancers of the oral cavity, pharynx, larynx, and esophagus in northern Italy. Cancer Res. 1990, 50, 6502-6507.
Argiris, A.; Karamouzis, M.V.; Raben, D.; Ferri,s R.L. Head and neck cancer. Lancet 2008, 371, 1695-1709. doi: 10.1016/S0140-6736(08)60728-X
Gillison, M.L.; Koch, W.M.; Capone, R.B.; Spafford, M.; Westra, W.H.; Wu, L. et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J. Natl. Cancer Inst. 2000, 92, 709-720. doi: 10.1093/jnci/92.9.709
Sisk, E.A.; Bradford, C.R.; Carey, T.E.; Paulino, A.; Robertson, E. Epstein-Barr virus detected in a head and neck squamous cell carcinoma cell line derived from an immunocompromised patient. Arch. Otolaryngol. Head Neck Surg. 2003, 129, 1115-1124. doi: 10.1001/archotol.129.10.1115
Moskovitz, J.; Moy, J.; Ferris, R.L. Immunotherapy for Head and Neck Squamous Cell Carcinoma. Curr. Oncol. Rep. 2018, 20, 22. doi: 10.1007/s11912-018-0654-5
Allen, C.T.; Ricker, J.L.; Chen, Z.; Van Waes, C. Role of activated nuclear factor-kappaB in the pathogenesis and therapy of squamous cell carcinoma of the head and neck. Head Neck 2007, 29, 959-971. doi: 10.1002/hed.20615
Bird, Adrian. Perceptions of Epigenetics. Nature, 2007, 447, 396–98. doi: 10.1038/nature05913
Tronick E, Hunter RG. Waddington, Dynamic Systems, and Epigenetics. Front Behav Neurosci. 2016;10:107. Published 2016 Jun 10. doi:10.3389/fnbeh.2016.00107
Payer B, Lee JT, Namekawa SH. X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Hum Genet. 2011;130(2):265-280. doi:10.1007/s00439-011-1024-7
Castilho, R.M.; Squarize, C.H.; Almeida, L.O. Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy. Int. J. Mol. Sci. 2017, 18, 1506. doi: 10.3390/ijms18071506
Zhang, P.; He, Q.; Lei, Y.; Li, Y.; Wen, X.; Hong, M. et al. m6A-mediated ZNF750 repression facilitates nasopharyngeal carcinoma progression. Cell Death Dis. 2018, 9, 1169. doi: 10.1038/s41419-018-1224-3
Lorincz, M.C.; Dickerson, D.R.; Schmitt, M.; Groudine, M. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat. Struct. Mol. Biol. 2004, 11, 1068-1075. doi: 10.1038/nsmb840
Antequera, F. Structure, function and evolution of CpG island promoters. Cell Mol. Life Sci. 2003, 60, 1647-1658. doi: 10.1007/s00018-003-3088-6
Suzuki, M.M.; Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 2008, 9, 465-476. doi: 10.1038/nrg2341
Robertson, K. DNA methylation and human disease. Nat. Rev. Genet. 2005, 6, 597–610. doi: 10.1038/nrg1655.
Verdone, L.; Caserta, M.; Di Mauro, E. Role of histone acetylation in the control of gene expression. Biochem. Cell Biol. 2005, 83, 344-353. doi: 10.1139/o05-041
Annunziato, A.T.; Hansen, J.C. Role of histone acetylation in the assembly and modulation of chromatin structures. Gene Expr. 2000, 9, 37-61. doi: 10.3727/000000001783992687
Marmorstein, R.; Zhou, M.M. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 2014, 6. doi: 10.1101/cshperspect.a018762
Jambhekar, A.; Dhall, A.; Shi, Y. Roles and regulation of histone methylation in animal development. Nat. Rev. Mol. Cell Biol. 2019, 20, 625–641. doi: 10.1038/s41580-019-0151-1
Wang, J. Q.; Yan, F. Q.; Wang, L. H.; Yin, W. J.; Chang, T. Y.; Liu, J. P.; Wu, K. J. Identification of new hypoxia-regulated epithelial-mesenchymal transition marker genes labeled by H3K4 acetylation. Genes Chromosomes Cancer. 2020, 59, 73–83. doi:10.1002/gcc.22802
Chen, F.; Qi, S.; Zhang, X.; Wu, J.; Yang, X.; Wang, R. lncRNA PLAC2 activated by H3K27 acetylation promotes cell proliferation and invasion via the activation of Wnt/β catenin pathway in oral squamous cell carcinoma. Int J Oncol. 2019, 54, 1183–1194. doi:10.3892/ijo.2019.4707
Almeida, L.O.; Abrahao, A.C.; Rosselli-Murai, L.K.; Giudice, F.S.; Zagni, C.; Leopoldino, A.M. et al. NFκB mediates cisplatin resistance through histone modifications in head and neck squamous cell carcinoma (HNSCC). FEBS open bio. 2013, 4, 96–104. doi: 10.1016/j.fob.2013.12.003
Wang, K.C.; Chang, H.Y. Molecular mechanisms of long non-coding RNAs. Mol. Cell. 2011, 43, 904-914, doi: 10.1016/j.molcel.2011.08.018
Hammond, S.M. MicroRNAs as tumor suppressors. Nat. Genet. 2007, 39, 582-583. doi: 10.1038/ng0507-582
Schneider, A.; Victoria, B.; Lopez, Y.N.; Suchorska, W.; Barczak, W.; Sobecka, A. et al. Tissue and serum microRNA profile of oral squamous cell carcinoma patients. Sci. Rep. 2018, 8, 675. doi: 10.1038/s41598-017-18945-z
Sobecka, A.; Barczak, W.; Suchorska, W.M. RNA interference in head and neck oncology. Oncol. Lett. 2016, 12, 3035-3040. doi: 10.3892/ol.2016.5079
Song, J.; Yi, C. Chemical Modifications to RNA: A New Layer of Gene Expression Regulation. ACS Chem. Biol. 2017, 12, 316-325. doi: 10.1021/acschembio.6b0096
Mongan, N.P.; Emes, R.D.; Archer, N. Detection and analysis of RNA methylation. F1000Res. 2019, 8. doi: 10.12688/f1000research.17956.1
Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012, 485, 201–206. doi: 10.1038/nature11112
Yue, Y.; Liu, J.; He, C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015, 29, 1343-1355. doi: 10.1101/gad.262766.115
Ke, S.; Alemu, E.A.; Mertens, C.; Gantman, E.C.; Fak, J.J.; Mele, A. et al. A majority of m6A residues are in the last exons, allowing the potential for 3' UTR regulation. Genes Dev. 2015, 1, 2037-2053. doi: 10.1101/gad.269415.115
Paris, J.; Morgan, M.; Campos, J.; Spencer, G.J.; Shmakova, A.; Ivanova et al. Targeting the RNA m6A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia. Cell Stem Cell 2019, 3, 137-148. doi: 10.1016/j.stem.2019.03.021
Cui, Q.; Shi, H.; Ye, P.; Li, L.; Qu, Q.; Sun, G. et al. m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep. 2017, 14, 2622-2634. doi: 10.1016/j.celrep.2017.02.059
Liu, J.; Ren, D.; Du, Z.; Wang, H.; Zhang, H.; Jin, Y. m6A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression. Biochem. Biophy.s Res. Commun. 2018, 502, 456-464. doi: 10.1016/j.bbrc.2018.05.175
Wu, L.; Wu, D.; Ning, J.; Liu, W.; Zhang, D. Changes of N6-methyladenosine modulators promote breast cancer progression. BMC Cancer 2019, 19, 326. doi: 10.1186/s12885-019-5538-z
Chen, M.; Wei, L.; Law, C.T.; Tsang, F.H.; Shen, J.; Cheng, C.L. et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent post-transcriptional silencing of SOCS2. Hepatology 2018, 67,2254-2270. doi: 10.1002/hep.29683
Han, J.; Wang, J.Z.; Yang, X.; Yu, H.; Zhou, R.; Lu, H.C. et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol. Cancer 2019, 22, 110. doi: 10.1186/s12943-019-1036-9
Taketo, K.; Konno, M.; Asai, A.; Koseki, J.; Toratani, M.; Satoh, T. et al. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int. J. Oncol. 2018, 52, 621-629. doi: 10.3892/ijo.2017.4219
Zhao, X.; Cui, L. Development and validation of a m6A RNA methylation regulators-based signature for predicting the prognosis of head and neck squamous cell carcinoma. Am. J. Cancer Res. 2019, 9, 2156-2169.