Nowe technologie wykorzystywane w procesie teleradioterapii w świetle doniesień zaprezentowanych podczas konferencji ASTRO 57 w San Antonio
PDF (Język Polski)

Supplementary Files

title page
Table 1

Keywords

radioterapia
nowoczesna technologia
drukarki 3D
radioterapia sterowana obrazem
MR-akcelerator liniowy

How to Cite

Skórska, M. (2016). Nowe technologie wykorzystywane w procesie teleradioterapii w świetle doniesień zaprezentowanych podczas konferencji ASTRO 57 w San Antonio. Letters in Oncology Science, 13(1), 24-29. https://doi.org/10.21641/los.13.1.6

Abstract

Celem niniejszej pracy było zwrócenie uwagi na najnowsze osiągnięcia technologiczne i trendy wteleradioterapii. Analizę oparto o wybrane raporty oraz problemy badawcze zaprezentowane podczas dorocznego spotkania ASTRO 57 w San Antonio.
https://doi.org/10.21641/los.13.1.6
PDF (Język Polski)

References

ViewRay ™ Announces World’s First Patients Treated Using MRI-Guided Radiation Therapy PR Newswire2014. 2014, February 5 . URL: http://www.prnewswire.com/news-releases/viewray-announces-worlds-first-patients-treated-using-mri-guided-radiation-therapy-243806571.html. Dostęp z dnia 19.01.2016.

Kron T, Eyles D, John SL, Battista J . Magnetic resonance imaging for adaptive cobalt tomotherapy: A proposal . J Med Phys. 2006; 31:242–54 .

Dempsey JF, Benoit D , Fitzsimmons JR, Haghighat A, Li JG, Low DA, et al . A Device for Realtime 3D Image-Guided IMRT. Int J Radiat Oncol Biol Phys. 2005;63:S202 .

Raaymakers BW, Lagendijk JJ, Overweg J, Kok JG, Raaijmakers AJ, Kerkhof EM, et al . Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept . Phys Med Biol. 2009 ; 54 : N229 – 37 .

Fallone BG, Murray B, Rathee S, Stanescu T, Steciw S, Vidakovic S, et al . First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system . Med Phys. 2009;36:2084–8

Noel CE, Parikh PJ, Spencer CR, Green OL, Hu Y, Mutic S, et al. Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy. Acta Oncol. 2015 Oct;54(9):1474-82.

Dowling JA, Lambert J, Parker J, Salvado O, Fripp J, Capp A, et al. An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy. Int J Radiat Oncol Biol Phys. 2012;83:e5–11

Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, et al. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. Journal of nuclear medicine. 2008; 49(11):1875–83

Korhonen J, Kapanen M, Keyriläinen J, Seppälä T, Tenhunen M. A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer. Med Phys. 2014 Jan; 41(1):011704.

Su KH, Hu L, Stehning C, Helle M, Qian P, Thompson CL, et al. Generation of brain pseudo-CTs using an undersampled, single-acquisition UTE-mDixon pulse sequence and unsupervised clustering. Med Phys. 2015 Aug;42(8):4974-86.

Rank CM, Tremmel C, Hünemohr N, Nagel AM, Jäkel O, Greilich S. MRI-based treatment plan simulation and adaptation for ion radiotherapy using a classification-based approach. Radiat Oncol. 2013 Mar 6;8:51.

Kim J, Glide-Hurst C, Doemer A, Wen N, Movsas B, Chetty IJ. Implementation of a novel algorithm for generating synthetic CT images from magnetic resonance imaging data sets for prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2015 Jan 1;91(1):39-47.

Su S, Moran K, Robar J. Design and production of 3D printed bolus for electron radiation therapy. J Appl Clin Med Phys. 2014:15(4):194–211.

Burleson S, Baker J, Hsia AT, Xu Z. Use of 3D printers to create a patient-specific 3D bolus for external beam therapy. J Appl Clin Med Phys. 2015 May 8;16(3):5247

Jaffray DA, Langen KM, Mageras G, Dawson LA, Yan D, Adams R, et al. Assuring Safety and Quality in Image Guided Delivery Of Radiation Therapy. ASTRO White Paper; Practical Radiation Oncology (2013)

Kanakavelu N, Samuel EJ. Assessment and evaluation of MV image guidance system performance in radiotherapy. Rep Pract Oncol Radiother. 2015;20(3):188-97.

Martins L, Couto JG, Barbosa B. Use of planar kV vs. CBCT in evaluation of setup errors in oesophagus carcinoma radiotherapy. Rep Pract Oncol Radiother. 2016;21(1):57-62.

Ding G, Patient dose and dose raduction techniques for kV and MV IGRT, Materiały zjazdowe konferencji ASTRO 57, San Antonio, 18-21.10.2015.

Mackie TR, Kapatoes J, Ruchala K, Lu W, Wu C, Olivera G, et al. Image guidance for precise conformal radiotherapy. Int J Radiat Oncol Biol Phys. 2003; 56(1):89–105

Ding GX, Munro P, Pawlowski J, Malcolm A, Coffey CW. Reducing radiation exposure to patients from kV-CBCT imaging. Radiother Oncol. 2010 Dec;97(3):585-92.

Ding GX, Munro P. Radiation exposure to patients from image guidance procedures and techniques to reduce the imaging dose. Radiother Oncol. 2013 Jul;108(1):91-8.

Morin O, Gillis A, Descovich M, Chen J, Aubin M, Aubry JF, et al. Patient dose considerations for routine megavoltage cone-beam CT imaging. Med Phys. 2007 May;34(5):1819-27.

Adamczyk M. Aspekty fizyczne leczenia stereotaktycznego w świetle doniesień zaprezentowanych podczas konferencji ASTRO 56 w San Francisco. Zeszyty Naukowe WCO, Letters in Oncology Science 2015; 12 (1): 14-18

Litoborska J. Najnowsze technologie wykorzystywane w procesie teleradioterapii w świetle doniesień konferencyjnych ASTRO 56. Zeszyty Naukowe WCO, Letters in Oncology Science 2015; 12 (3): 33-36.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Downloads

Download data is not yet available.