Abstrakt
Wprowadzenie technik edycji genomu jako podstawowego narzędzia w badaniach naukowych wywołało znaczny postęp w naukach biologicznych, medycznych oraz pozwoliło zrozumieć patofizjologię wielu chorób. Jedną z najnowocześniejszych metod wprowadzania specyficznych zmian w genomie jest obecnie technologia CRISPR/Cas9, która poprzez insercję, delecję lub zamianę nukleotydów w sekwencji DNA prowadzi do inaktywacji genów docelowych, nabycia nowych cech genetycznych lub korekty niepożądanych mutacji. Ponadto, technologia CRISPR/Cas9 pozwala na tworzenie modeli in vitro i in vivo wielu chorób, a następnie dokładne badanie mechanizmów ich powstawania. Obecnie prowadzonych jest wiele badań w dziedzinie onkologii wykorzystujących technikę CRISPR/Cas9, a niniejsza praca jest ich zwięzłym podsumowaniem.
Bibliografia
Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 25 maj 2018;25(1):1234–57.
Koujah L, Shukla D, Naqvi AR. CRISPR-Cas Based Targeting of Host and Viral Genes as an Antiviral Strategy. Semin Cell Dev Biol. grudzień 2019;96:53–64.
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. grudzień 1987;169(12):5429–33.
Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 15 maj 2018;9:1911.
Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. J Bacteriol. 12 marzec 2018;200(7):e00580-17.
Makarova KS, Koonin EV. Annotation and Classification of CRISPR-Cas Systems. Methods Mol Biol Clifton NJ. 2015;1311:47–75.
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, i in. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 23 marzec 2007;315(5819):1709–12.
Cebrian-Serrano A, Davies B. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm Genome. 2017;28(7):247–61.
Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, i in. Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. Cell. 27 luty 2014;156(5):935–49.
Ma Y, Zhang L, Huang X. Genome modification by CRISPR/Cas9. FEBS J. grudzień 2014;281(23):5186–93.
Hryhorowicz M, Lipiński D, Zeyland J, Słomski R. CRISPR/Cas9 Immune System as a Tool for Genome Engineering. Arch Immunol Ther Exp (Warsz). 2017;65(3):233–40.
Wilbie D, Walther J, Mastrobattista E. Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing. Acc Chem Res. 18 czerwiec 2019;52(6):1555–64.
Refaey ME, Xu L, Gao Y, Canan B, Adesanya TMA, Warner SC, i in. In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice. Circ Res. 29 wrzesień 2017;121(8):923–9.
Xie J, Wei J, Lv L, Han Q, Yang W, Li G, i in. Angiopoietin-2 induces angiogenesis via exosomes in human hepatocellular carcinoma. Cell Commun Signal CCS. 17 marzec 2020;18:46.
Yoon A-R, Jung B-K, Choi E, Chung E, Hong J, Kim J-S, i in. CRISPR-Cas12a with an oAd Induces Precise and Cancer-Specific Genomic Reprogramming of EGFR and Efficient Tumor Regression. Mol Ther. 7 październik 2020;28(10):2286–96.
Jubair L, Lam AK, Fallaha S, McMillan NAJ. CRISPR/Cas9-loaded stealth liposomes effectively cleared established HPV16-driven tumours in syngeneic mice. PLoS ONE. 7 styczeń 2021;16(1):e0223288.
Dumeau C-E, Monfort A, Kissling L, Swarts DC, Jinek M, Wutz A. Introducing gene deletions by mouse zygote electroporation of Cas12a/Cpf1. Transgenic Res. 2019;28(5):525–35.
Sheets TP, Park C-H, Park K-E, Powell A, Donovan DM, Telugu BP. Somatic Cell Nuclear Transfer Followed by CRIPSR/Cas9 Microinjection Results in Highly Efficient Genome Editing in Cloned Pigs. Int J Mol Sci. 3 grudzień 2016;17(12):2031.
Uddin F, Rudin CM, Sen T. CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Front Oncol. 7 sierpień 2020;10:1387.
Savić N, Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res J Lab Clin Med. luty 2016;168:15–21.
Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release Off J Control Release Soc. 28 listopad 2017;266:17–26.
Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature. 24 listopad 2016;539(7630):479.
Baliou S, Adamaki M, Kyriakopoulos AM, Spandidos DA, Panayiotidis M, Christodoulou I, i in. CRISPR therapeutic tools for complex genetic disorders and cancer (Review). Int J Oncol. 6 czerwiec 2018;53(2):443–68.
Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, i in. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 27 lipiec 2017;547(7664):413–8.
Lentsch E, Li L, Pfeffer S, Ekici AB, Taher L, Pilarsky C, i in. CRISPR/Cas9-Mediated Knock-Out of KrasG12D Mutated Pancreatic Cancer Cell Lines. Int J Mol Sci. 14 listopad 2019;20(22):5706.
Watanabe S, Shimada S, Akiyama Y, Ishikawa Y, Ogura T, Ogawa K, i in. Loss of KDM6A characterizes a poor prognostic subtype of human pancreatic cancer and potentiates HDAC inhibitor lethality. Int J Cancer. 1 lipiec 2019;145(1):192–205.
Digomann D, Kurth I, Tyutyunnykova A, Chen O, Löck S, Gorodetska I, i in. The CD98 Heavy Chain Is a Marker and Regulator of Head and Neck Squamous Cell Carcinoma Radiosensitivity. Clin Cancer Res Off J Am Assoc Cancer Res. 15 maj 2019;25(10):3152–63.
Jiang F-N, Liang Y-X, Wei W, Zou C-Y, Chen G-X, Wan Y-P, i in. Functional classification of prostate cancer-associated miRNAs through CRISPR/Cas9-mediated gene knockout. Mol Med Rep. listopad 2020;22(5):3777–84.
Lovnicki J, Gan Y, Feng T, Li Y, Xie N, Ho C-H, i in. LIN28B promotes the development of neuroendocrine prostate cancer. J Clin Invest. 130(10):5338–48.
Ercolano G, De Cicco P, Rubino V, Terrazzano G, Ruggiero G, Carriero R, i in. Knockdown of PTGS2 by CRISPR/CAS9 System Designates a New Potential Gene Target for Melanoma Treatment. Front Pharmacol. 5 grudzień 2019;10:1456.
Chira S, Gulei D, Hajitou A, Zimta A-A, Cordelier P, Berindan-Neagoe I. CRISPR/Cas9: Transcending the Reality of Genome Editing. Mol Ther Nucleic Acids. 8 kwiecień 2017;7:211–22.
Janik E, Niemcewicz M, Ceremuga M, Krzowski L, Saluk-Bijak J, Bijak M. Various Aspects of a Gene Editing System—CRISPR–Cas9. Int J Mol Sci. 16 grudzień 2020;21(24):9604.
Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest. 1 październik 2014;124(10):4154–61.
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, i in. High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822–6.
Baylis F, McLeod M. First-in-human Phase 1 CRISPR Gene Editing Cancer Trials:Are We Ready? Curr Gene Ther. 2017;17(4):309–19.
Mulvihill JJ, Capps B, Joly Y, Lysaght T, Zwart HAE, Chadwick R, i in. Ethical issues of CRISPR technology and gene editing through the lens of solidarity. Br Med Bull. 2017;122(1):17–29.
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Prawa autorskie (c) 2021 Zeszyty Naukowe Wielkopolskiego Centrum Onkologii