The effect of the combination of TGF-β1 and BMP2 with high-density pellet cell culture during chondrogenic differentiation of pluripotent stem cells.
PDF (Język Polski)


Regenerative medicine
Chondrogenic differentiation
Pluripotent Stem Cells
Articular cartilage chondrocytes

How to Cite

Lach, M. S., & Suchorska, W. M. (2020). The effect of the combination of TGF-β1 and BMP2 with high-density pellet cell culture during chondrogenic differentiation of pluripotent stem cells. Letters in Oncology Science, 17(1), 37–46.


Introduction: The osteoarthritis is a serious threat for well-developed and ageing countries. Present techniques of treatment of damaged cartilage are not sufficient. Hence, new strategies should be developed. One of the potential sources for the regeneration of cartilage is pluripotent stem cells (PSC).

Aim: The development of an efficient protocol of chondrogenic differentiation using PSC.

Material and methods: The human embryonic stem cell line (BG01V) was used in this study. The chondrogenic differentiation was performed using high-density pellet culture in the presence of TGF-β1 (10 ng/ml) and BMP2 (100 ng/ml). After 21 days gene expression analysis of markers related to chondrogenesis was done. Additionally, the histological staining was performed to detect the deposition of proteoglycans and collagens in differentiated pellet culture.

Results: Obtained pellets exhibited decreased expression of pluripotent markers. The upregulation of mesodermal marker and type II collagen was observed in differentiated pellets in the presence of applied growth factors. The histological analysis revealed mild deposition of proteoglycans and collagens.

Conclusion: The presented approach enables to obtain chondrogenic pellets in their early stages of chondrogenesis.
PDF (Język Polski)


E. Stanisławska‑Biernat, Social and economic aspects of osteoarthritis, Polish Arch. Intern. Med. 118 (2008) 50–53.

D. Umlauf, S. Frank, T. Pap, J. Bertrand, Cartilage biology, pathology, and repair., Cell. Mol. Life Sci. 67 (2010) 4197–4211.

M. Richter, T. Trzeciak, J.D. Rybka, W. Suchorska, E. Augustyniak, M. Lach, M. Kaczmarek, J. Kaczmarczyk, Correlations between serum adipocytokine concentrations, disease stage, radiological status and total body fat content in the patients with primary knee osteoarthritis, Int. Orthop. 41 (2017) 983–989.

R.L. Taruc-Uy, S.A. Lynch, Diagnosis and Treatment of Osteoarthritis, Prim. Care - Clin. Off. Pract. 40 (2013) 821–836.

B. Kurcz, J. Lyons, Z. Sayeed, A.A. Anoushiravani, R. Iorio, Osteolysis as it Pertains to Total Hip Arthroplasty, Orthop. Clin. North Am. 49 (2018) 419–435.

X. a Li, S. Iyer, M.B. Cross, M.P. Figgie, Total joint replacement in adolescents: literature review and case examples., Curr. Opin. Pediatr. 24 (2012) 57–63.

N. Mahmoudifar, P.M. Doran, Chondrogenesis and cartilage tissue engineering: the longer road to technology development, Trends Biotechnol. 30 (2012) 166–176.

M. Lach, T. Trzeciak, M. Richter, J. Pawlicz, W.M. Suchorska, Directed differentiation of induced pluripotent stem cells into chondrogenic lineages for articular cartilage treatment, J. Tissue Eng. 5 (2014) 204173141455270.

M. Kanawa, A. Igarashi, V.S. Ronald, Y. Higashi, H. Kurihara, M. Sugiyama, T. Saskianti, H. Pan, Y. Kato, Age-dependent decrease in the chondrogenic potential of human bone marrow mesenchymal stromal cells expanded with fibroblast growth factor-2, Cytotherapy. 15 (2013) 1062–1072.

S. Mohamed-Ahmed, I. Fristad, S.A. Lie, S. Suliman, K. Mustafa, H. Vindenes, S.B. Idris, Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison, Stem Cell Res. Ther. 9 (2018) 168.

O.S. Beane, E.M. Darling, Isolation, characterization, and differentiation of stem cells for cartilage regeneration, Ann. Biomed. Eng. 40 (2012) 2079–2097.

J. Bilic, J.C. Izpisua Belmonte, Concise review: Induced pluripotent stem cells versus embryonic stem cells: Close enough or yet too far apart?, Stem Cells. 30 (2012) 33–41.

C. Eguizabal, B. Aran, S.M. Chuva de Sousa Lopes, M. Geens, B. Heindryckx, S. Panula, M. Popovic, R. Vassena, A. Veiga, Two decades of embryonic stem cells: a historical overview, Hum. Reprod. Open. 2019 (2019) hoy024.

S.A. Lietman, Induced pluripotent stem cells in cartilage repair, World J. Orthop. 7 (2016) 149-155.

M.K. Carpenter, J. Frey-Vasconcells, M.S. Rao, Developing safe therapies from human pluripotent stem cells., Nat. Biotechnol. 27 (2009) 606–613.

E. Augustyniak, T. Trzeciak, M. Richter, J. Kaczmarczyk, W. Suchorska, The role of growth factors in stem cell-directed chondrogenesis: a real hope for damaged cartilage regeneration, Int. Orthop. 39 (2015) 995–1003.

H. Nejadnik, S. Diecke, O.D. Lenkov, F. Chapelin, J. Donig, X. Tong, N. Derugin, R.C.F.F. Chan, A. Gaur, F. Yang, J.C. Wu, H.E. Daldrup-Link, Improved Approach for Chondrogenic Differentiation of Human Induced Pluripotent Stem Cells, Stem Cell Rev. Reports. 11 (2015) 242–253.

R.A. Oldershaw, M.A. Baxter, E.T. Lowe, N. Bates, L.M. Grady, F. Soncin, D.R. Brison, T.E. Hardingham, S.J. Kimber, Directed differentiation of human embryonic stem cells toward chondrocytes, Nat. Biotechnol. 28 (2010) 1187–1194.

T. Nakagawa, S.Y. Lee, a H. Reddi, Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor beta1., Arthritis Rheum. 60 (2009) 3686–3692.

Y.Y. Choi, B.G. Chung, D.H. Lee, A. Khademhosseini, J.-H. Kim, S.-H. Lee, Controlled-size embryoid body formation in concave microwell arrays., Biomaterials. 31 (2010) 4296–4303.

W.M. Suchorska, E. Augustyniak, M. Richter, T. Trzeciak, Comparison of Four Protocols to Generate Chondrocyte-Like Cells from Human Induced Pluripotent Stem Cells (hiPSCs), Stem Cell Rev. Reports. 13 (2017) 299–308.

B. Keller, T. Yang, Y. Chen, E. Munivez, T. Bertin, B. Zabel, B. Lee, Interaction of TGFβ and BMP signaling pathways during chondrogenesis., PLoS One. 6 (2011) e16421.

M.S. Lach, K. Kulcenty, K. Jankowska, T. Trzeciak, M. Richter, W.M. Suchorska, Effect of cellular mass on chondrogenic differentiation during embryoid body formation., Mol. Med. Rep. 18 (2018) 2705–2714.

M.S. Lach, J. Wroblewska, K. Kulcenty, M. Richter, T. Trzeciak, W.M. Suchorska, Chondrogenic Differentiation of Pluripotent Stem Cells under Controllable Serum-Free Conditions, Int. J. Mol. Sci. 20 (2019) 2711.

W.S. Toh, H. Liu, B.C. Heng, A.J. Rufaihah, C.P. Ye, T. Cao, Combined effects of TGFbeta1 and BMP2 in serum-free chondrogenic differentiation of mesenchymal stem cells induced hyaline-like cartilage formation., Growth Factors. 23 (2005) 313–321.

Ľ. Danišovič, I. Varga, Š. Polák, Growth factors and chondrogenic differentiation of mesenchymal stem cells, Tissue Cell. 44 (2012) 69–73.

W.S. Toh, E.H. Lee, T. Cao, Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine., Stem Cell Rev. 7 (2011) 544–559.

M.K. Murphy, D.J. Huey, J.C. Hu, K.A. Athanasiou, TGF-β1, GDF-5, and BMP-2 Stimulation Induces Chondrogenesis in Expanded Human Articular Chondrocytes and Marrow-Derived Stromal Cells, Stem Cells. 33 (2015) 762–773.

S.T.B. Ho, Z. Yang, H.P.J. Hui, K.W.S. Oh, B.H.A. Choo, E.H. Lee, A serum free approach towards the conservation of chondrogenic phenotype during in vitro cell expansion, Growth Factors. 27 (2009) 321–333.

C.E.A. Jochems, J.B.F. van der Valk, F.R. Stafleu, V. Baumans, The use of fetal bovine serum: ethical or scientific problem?, Altern. Lab. Anim. 30 (2002) 219–227.

B. Bilgen, E. Orsini, R.K. Aaron, D.M. Ciombor, FBS suppresses TGF-β1-induced chondrogenesis in synoviocyte pellet cultures while dexamethasone and dynamic stimuli are beneficial, J. Tissue Eng. Regen. Med. 1 (2007) 436–442.

J.S. Fitzsimmons, A. Sanyal, C. Gonzalez, T. Fukumoto, V.R. Clemens, S.W. O’Driscoll, G.G. Reinholz, Serum-free media for periosteal chondrogenesis in vitro, J. Orthop. Res. 22 (2004) 716–725.

K. Endo, N. Fujita, T. Nakagawa, R. Nishimura, Effect of fibroblast growth factor-2 and serum on canine mesenchymal stem cell chondrogenesis, Tissue Eng. Part A. 25 (2018) 901-910.

M.S. Lach, J.P. Wroblewska, E. Augustyniak, K. Kulcenty, W.M. Suchorska, A feeder- and xeno-free human induced pluripotent stem cell line obtained from primary human dermal fibroblasts with epigenetic repression of reprogramming factors expression: GPCCi001-A, Stem Cell Res. 20 (2017) 34–37.

R.M. Guzzo, J. Gibson, R.-H. Xu, F.Y. Lee, H. Drissi, Efficient differentiation of human iPSC-derived mesenchymal stem cells to chondroprogenitor cells., J. Cell. Biochem. 114 (2013) 480–490.

A. Yamashita, M. Morioka, Y. Yahara, M. Okada, T. Kobayashi, S. Kuriyama, S. Matsuda, N. Tsumaki, Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs, Stem Cell Reports. 4 (2015) 404–418.

M.B. Goldring, Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis., Ther. Adv. Musculoskelet. Dis. 4 (2012) 269–285.

M. Centola, B. Tonnarelli, S. Schären, N. Glaser, A. Barbero, I. Martin, Priming 3D Cultures of Human Mesenchymal Stromal Cells Toward Cartilage Formation Via Developmental Pathways, Stem Cells Dev. 22 (2013) 2849–2858.

N. Ahmed, J. Iu, C.E. Brown, D.W. Taylor, R.A. Kandel, Serum- and Growth-Factor-Free Three-Dimensional Culture System Supports Cartilage Tissue Formation by Promoting Collagen Synthesis via Sox9– Col2a1 Interaction, Tissue Eng. Part A. 20 (2014) 2224–2233.

J.-D. Wei, H. Tseng, E.T.-H. Chen, C.-H. Hung, Y.-C. Liang, M.-T. Sheu, C.-H. Chen, Characterizations of Chondrocyte Attachment and Proliferation on Electrospun Biodegradable Scaffolds of PLLA and PBSA for Use in Cartilage Tissue Engineering, J. Biomater. Appl. . 26 (2012) 963–985.

M. Falah, G. Nierenberg, M. Soudry, M. Hayden, G. Volpin, Treatment of articular cartilage lesions of the knee., Int. Orthop. 34 (2010) 621–630.

J.-L. Chen, L. Duan, W. Zhu, J. Xiong, D. Wang, Extracellular matrix production in vitro in cartilage tissue engineering., J. Transl. Med. 12 (2014) 88.

N. Desai, P. Rambhia, A. Gishto, Human embryonic stem cell cultivation: Historical perspective and evolution of xeno-free culture systems, Reprod. Biol. Endocrinol. 13 (2015) 9.

S. Yamasaki, Y. Taguchi, A. Shimamoto, H. Mukasa, H. Tahara, T. Okamoto, Generation of Human Induced Pluripotent Stem (iPS) Cells in Serum- and Feeder-Free Defined Culture and TGF-β1 Regulation of Pluripotency, PLoS One. 9 (2014) e87151.

A. Hoffmann, S. Czichos, C. Kaps, D. Bächner, H. Mayer, B.G. Kurkalli, Y. Zilberman, G. Turgeman, G. Pelled, G. Gross, D. Gazit, The T-box transcription factor Brachyury mediates cartilage development in mesenchymal stem cell line C3H10T1/2., J. Cell Sci. 115 (2002) 769–781.

J.-Y. Ko, K.-I. Kim, S. Park, G.-I. Im, In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells, Biomaterials. 35 (2014) 3571–3581.

J.A. Martin, J.A. Buckwalter, The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair., J. Bone Joint Surg. Am. 85-A Suppl (2003) 106–110.

A. Derfoul, G.L. Perkins, D.J. Hall, R.S. Tuan, Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes., Stem Cells. 24 (2006) 1487–1495.

I. Sekiya, P. Koopman, K. Tsuji, S. Mertin, V. Harley, Y. Yamada, K. Shinomiya, A. Nifuji, M. Noda, Dexamethasone enhances SOX9 expression in chondrocytes, J. Endocrinol. 169 (2001) 573–579.

Y. Sato, H. Mera, D. Takahashi, T. Majima, N. Iwasaki, S. Wakitani, M. Takagi, Synergistic effect of ascorbic acid and collagen addition on the increase in type 2 collagen accumulation in cartilage-like MSC sheet, Cytotechnology. 69 (2017) 405–416.

A.G. Clark, A.L. Rohrbaugh, I. Otterness, V.B. Kraus, The effects of ascorbic acid on cartilage metabolism in guinea pig articular cartilage explants, Matrix Biol. 21 (2002) 175–184.

A. Yamashita, Y. Tamamura, M. Morioka, P. Karagiannis, N. Shima, N. Tsumaki, Considerations in hiPSC-derived cartilage for articular cartilage repair, Inflamm. Regen. 38 (2018) 17.

D. Yang, S. Chen, C. Gao, X. Liu, Y. Zhou, P. Liu, J. Cai. Chemically defined serum-free conditions for cartilage regeneration from human embryonic stem cells, Life Sci. 164 (2016) 9–14.

Y. Nam, Y.A. Rim, S.M. Jung, J.H. Ju. Cord blood cell-derived iPSCs as a new candidate for chondrogenic differentiation and cartilage regeneration, Stem Cell Res. Ther. 8 (2017) 1–13.

J. van de Breevaart Bravenboer, C.D. In der Maur, P.K. Bos, L. Feenstra, J.A.N. Verhaar, H. Weinans, et al. Improved cartilage integration and interfacial strength after enzymatic treatment in a cartilage transplantation model., Arthritis Res. Ther. 6 (2004) R469-R476.

Wszyscy autorzy pracy muszą wyrazić pisemną zgodę na jej publikację. Oświadczenie pierwszego autora, że wszyscy współautorzy zapoznali się z praca i wyrazili zgodę na jej publikację jest również akceptowane. W momencie przyjęcia pracy do publikacji wszelkie prawa do jej wykorzystania przechodzą na właściciela czasopisma i jego praw autorskich. Praca nie może zostać opublikowana w żadnym innym wydawnictwie do czasu wykorzystania jej przez Redakcję Czasopisma. Po opublikowaniu praca pozostaje własnością Wielkopolskiego Centrum Onkologii, a jakiekolwiek jej wykorzystanie w całości lub w części, bez względu na nośnik i język, możliwe jest tylko po uzyskaniu pisemnej zgody Redakcji, która jest wyłącznym wydawcą i dystrybutorem czasopisma , z podaniem źródła.


Download data is not yet available.