Abstract
Disturbances in partial pressure of oxygen control play a key role in the pathogenesis of many diseases, including cancer. Solid tumor cells are particularly susceptible to hypoxia as a result of uncontrolled tumor growth and low, chaotic vascularization in the neoplastic region. Reduced oxygen pressure in cancer cells is associated with a more aggressive phenotype and an increased metastatic potential. In conditions of insufficient oxygen, tumors adapt to the prevailing conditions by activating genes responsible for cell survival, neovascularization and apoptosis inhibition. In head and neck cancers (HNC), conditions of hypoxia are often correlated with alterations in cellular metabolism and immune response to radio- and chemotherapy.
References
L. Q. M. Chow, „Head and Neck Cancer”, N. Engl. J. Med., 2020, doi:10.1056/NEJMra1715715
A. Argiris, M. V. Karamouzis, D. Raben, i R. L. Ferris, „Head and neck cancer”, Lancet Lond. Engl., t. 371, nr 9625, s. 1695–1709, maj 2008, doi: 10.1016/S0140-6736(08)60728-X.
E.-L. Göttgens, C. Ostheimer, P. N. Span, J. Bussink, i E. M. Hammond, „HPV, hypoxia and radiation response in head and neck cancer”, Br. J. Radiol., t. 92, nr 1093, sty. 2019, doi: 10.1259/bjr.20180047.
C. R. Leemans, P. J. F. Snijders, i R. H. Brakenhoff, „The molecular landscape of head and neck cancer”, Nat. Rev. Cancer, t. 18, nr 5, Art. nr 5, maj 2018, doi: 10.1038/nrc.2018.11.
M. Prasad, S. Jagadeeshan, M. Scaltriti, I. Allon, i M. Elkabets, „In Vitro Establishment of a Genetically Engineered Murine Head and Neck Cancer Cell Line using an Adeno-Associated Virus-Cas9 System”, JoVE J. Vis. Exp., nr 155, s. e60410, sty. 2020, doi: 10.3791/60410.
P. K. Ha, S. S. Chang, C. A. Glazer, J. A. Califano, i D. Sidransky, „Molecular techniques and genetic alterations in head and neck cancer”, Oral Oncol., t. 45, nr 4–5, s. 335–339, 2009, doi: 10.1016/j.oraloncology.2008.05.015.
X. Jing i in., „Role of hypoxia in cancer therapy by regulating the tumor microenvironment”, Mol. Cancer, t. 18, lis. 2019, doi: 10.1186/s12943-019-1089-9.
G. L. Semenza i G. L. Wang, „A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation.”, Mol. Cell. Biol., t. 12, nr 12, s. 5447–5454, grudz. 1992.
C.-J. Hu, A. Sataur, L. Wang, H. Chen, i M. C. Simon, „The N-Terminal Transactivation Domain Confers Target Gene Specificity of Hypoxia-inducible Factors HIF-1α and HIF-2α”, Mol. Biol. Cell, t. 18, nr 11, s. 4528–4542, lis. 2007, doi: 10.1091/mbc.E06-05-0419.
H. Tian, S. L. McKnight, i D. W. Russell, „Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells”, Genes Dev., t. 11, nr 1, s. 72–82, sty. 1997, doi: 10.1101/gad.11.1.72.
M. Mandl i R. Depping, „Hypoxia-Inducible Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT) (HIF-1β): Is It a Rare Exception?”, Mol. Med., t. 20, nr 1, s. 215–220, maj 2014, doi: 10.2119/molmed.2014.00032.
T. Jokilehto i P. M. Jaakkola, „The role of HIF prolyl hydroxylases in tumour growth”, J. Cell. Mol. Med., t. 14, nr 4, s. 758–770, kwi. 2010, doi: 10.1111/j.1582-4934.2010.01030.x.
H. Choudhry i A. L. Harris, „Advances in Hypoxia-Inducible Factor Biology”, Cell Metab., t. 27, nr 2, s. 281–298, luty 2018, doi: 10.1016/j.cmet.2017.10.005.
V. H. Haase, „Regulation of erythropoiesis by hypoxia-inducible factors”, Blood Rev., t. 27, nr 1, s. 41–53, sty. 2013, doi: 10.1016/j.blre.2012.12.003.
G. L. Semenza, „Regulation of Oxygen Homeostasis by Hypoxia-Inducible Factor 1”, Physiology, t. 24, nr 2, s. 97–106, kwi. 2009, doi: 10.1152/physiol.00045.2008.
D. Watts i in., „Hypoxia Pathway Proteins are Master Regulators of Erythropoiesis”, Int. J. Mol. Sci., t. 21, nr 21, paź. 2020, doi: 10.3390/ijms21218131.
N. D. Seibold, S. E. Schild, M. P. Gebhard, F. Noack, i D. Rades, „Prognosis of patients with locally advanced squamous cell carcinoma of the head and neck: Impact of tumor cell expression of EPO and EPO-R”, Strahlenther. Onkol., t. 189, nr 7, s. 559–565, lip. 2013, doi: 10.1007/s00066-013-0320-7.
F. Grebien i in., „Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2”, Blood, t. 111, nr 9, s. 4511–4522, maj 2008, doi: 10.1182/blood-2007-07-102848.
A. Mohyeldin i in., „Erythropoietin Signaling Promotes Invasiveness of Human Head and Neck Squamous Cell Carcinoma”, Neoplasia N. Y. N, t. 7, nr 5, s. 537–543, maj 2005.
A. Wilson i in., „c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation”, Genes Dev., t. 18, nr 22, s. 2747–2763, lis. 2004, doi: 10.1101/gad.313104.
M. Tanaka, Y. Hirabayashi, T. Sekiguchi, T. Inoue, M. Katsuki, i A. Miyajima, „Targeted disruption of oncostatin M receptor results in altered hematopoiesis”, Blood, t. 102, nr 9, s. 3154–3162, lis. 2003, doi: 10.1182/blood-2003-02-0367.
M. Henke i in., „Do Erythropoietin Receptors on Cancer Cells Explain Unexpected Clinical Findings?”, J. Clin. Oncol., t. 24, nr 29, s. 4708–4713, paź. 2006, doi: 10.1200/JCO.2006.06.2737.
X. Lv i in., „The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism”, Genes Dis., t. 4, nr 1, s. 19–24, grudz. 2016, doi: 10.1016/j.gendis.2016.11.003.
R. S. Apte, D. S. Chen, i N. Ferrara, „VEGF in Signaling and Disease: Beyond Discovery and Development”, Cell, t. 176, nr 6, s. 1248–1264, mar. 2019, doi: 10.1016/j.cell.2019.01.021.
R. R. Ramjiawan, A. W. Griffioen, i D. G. Duda, „Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy?”, Angiogenesis, t. 20, nr 2, s. 185–204, maj 2017, doi: 10.1007/s10456-017-9552-y.
P. Carmeliet i R. K. Jain, „Molecular mechanisms and clinical applications of angiogenesis”, Nature, t. 473, nr 7347, s. 298–307, maj 2011, doi: 10.1038/nature10144.
I. Micaily, J. Johnson, i A. Argiris, „An update on angiogenesis targeting in head and neck squamous cell carcinoma”, Cancers Head Neck, t. 5, nr 1, s. 5, kwi. 2020, doi: 10.1186/s41199-020-00051-9.
D. Kumar, „Regulation of glycolysis in head and neck squamous cell carcinoma”, Postdoc J. J. Postdr. Res. Postdr. Aff., t. 5, nr 1, s. 14–28, sty. 2017.
S.-J. Li, W. Guo, G.-X. Ren, G. Huang, T. Chen, i S.-L. Song, „Expression of Glut-1 in primary and recurrent head and neck squamous cell carcinomas, and compared with 2-[18F]fluoro-2-deoxy-D-glucose accumulation in positron emission tomography”, Br. J. Oral Maxillofac. Surg., t. 46, nr 3, s. 180–186, kwi. 2008, doi: 10.1016/j.bjoms.2007.11.003.
J. Chen, S. Zhang, Y. Li, Z. Tang, i W. Kong, „Hexokinase 2 overexpression promotes the proliferation and survival of laryngeal squamous cell carcinoma”, Tumor Biol., t. 35, nr 4, s. 3743–3753, kwi. 2014, doi: 10.1007/s13277-013-1496-2.
S. Blatt i in., „Lactate as a predictive marker for tumor recurrence in patients with head and neck squamous cell carcinoma (HNSCC) post radiation: a prospective study over 15 years”, Clin. Oral Investig., t. 20, nr 8, s. 2097–2104, lis. 2016, doi: 10.1007/s00784-015-1699-6.
Y.-D. Wang, S.-J. Li, i J.-X. Liao, „Inhibition of Glucose Transporter 1 (GLUT1) Chemosensitized Head and Neck Cancer Cells to Cisplatin”, Technol. Cancer Res. Treat., t. 12, nr 6, s. 525–535, grudz. 2013, doi: 10.7785/tcrt.2012.500343.