Epigenetics as a promising scientific field in the context of head and neck cancer treatment
PDF (Język Polski)


head and neck cancer, epigenetic, DNA methylation, histone modifications, non-coding RNA activity, RNA methylation

How to Cite

Romanowska, K. (2021). Epigenetics as a promising scientific field in the context of head and neck cancer treatment. Letters in Oncology Science, 17(4), 22–27. https://doi.org/10.21641/los.2020.17.4.191


Head and neck cancer (HNC) is the sixth most prevalent cancer worldwide, representing more than a half million of the new cases every year. Due to high genetic and histologic diversity of head and neck cancers, their molecular pathogenesis is based on complex process including disorders driven not only by accumulation of genetic alterations, but also changes in epigenetic landscape. The epigenetic variations in HNC include DNA methylation, histone modifications, non-coding RNA activity and RNA methylation. Some of the epigenetic alterations promote cancer formation and progression by controlling the expression machinery. Consequently, those modifications can be used as biomarkers for clinical detection and surveillance of cancer and will reveal new therapeutic opportunities for cancer patients.

PDF (Język Polski)


Bray, F.; Ferlay, J.; Soerjomataram, I. Global Cancer Statistics 2018 : GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394-424. doi: 10.3322/caac.21492

Franceschi, S., Talamini, R.; Barra, S.; Barón, A.E.; Negri, E.; Bidoli, E.; Serraino, D.; La Vecchia, C. Smoking and drinking in relation to cancers of the oral cavity, pharynx, larynx, and esophagus in northern Italy. Cancer Res. 1990, 50, 6502-6507.

Argiris, A.; Karamouzis, M.V.; Raben, D.; Ferri,s R.L. Head and neck cancer. Lancet 2008, 371, 1695-1709. doi: 10.1016/S0140-6736(08)60728-X

Gillison, M.L.; Koch, W.M.; Capone, R.B.; Spafford, M.; Westra, W.H.; Wu, L. et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J. Natl. Cancer Inst. 2000, 92, 709-720. doi: 10.1093/jnci/92.9.709

Sisk, E.A.; Bradford, C.R.; Carey, T.E.; Paulino, A.; Robertson, E. Epstein-Barr virus detected in a head and neck squamous cell carcinoma cell line derived from an immunocompromised patient. Arch. Otolaryngol. Head Neck Surg. 2003, 129, 1115-1124. doi: 10.1001/archotol.129.10.1115

Moskovitz, J.; Moy, J.; Ferris, R.L. Immunotherapy for Head and Neck Squamous Cell Carcinoma. Curr. Oncol. Rep. 2018, 20, 22. doi: 10.1007/s11912-018-0654-5

Allen, C.T.; Ricker, J.L.; Chen, Z.; Van Waes, C. Role of activated nuclear factor-kappaB in the pathogenesis and therapy of squamous cell carcinoma of the head and neck. Head Neck 2007, 29, 959-971. doi: 10.1002/hed.20615

Bird, Adrian. Perceptions of Epigenetics. Nature, 2007, 447, 396–98. doi: 10.1038/nature05913

Tronick E, Hunter RG. Waddington, Dynamic Systems, and Epigenetics. Front Behav Neurosci. 2016;10:107. Published 2016 Jun 10. doi:10.3389/fnbeh.2016.00107

Payer B, Lee JT, Namekawa SH. X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Hum Genet. 2011;130(2):265-280. doi:10.1007/s00439-011-1024-7

Castilho, R.M.; Squarize, C.H.; Almeida, L.O. Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy. Int. J. Mol. Sci. 2017, 18, 1506. doi: 10.3390/ijms18071506

Zhang, P.; He, Q.; Lei, Y.; Li, Y.; Wen, X.; Hong, M. et al. m6A-mediated ZNF750 repression facilitates nasopharyngeal carcinoma progression. Cell Death Dis. 2018, 9, 1169. doi: 10.1038/s41419-018-1224-3

Lorincz, M.C.; Dickerson, D.R.; Schmitt, M.; Groudine, M. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat. Struct. Mol. Biol. 2004, 11, 1068-1075. doi: 10.1038/nsmb840

Antequera, F. Structure, function and evolution of CpG island promoters. Cell Mol. Life Sci. 2003, 60, 1647-1658. doi: 10.1007/s00018-003-3088-6

Suzuki, M.M.; Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 2008, 9, 465-476. doi: 10.1038/nrg2341

Robertson, K. DNA methylation and human disease. Nat. Rev. Genet. 2005, 6, 597–610. doi: 10.1038/nrg1655.

Verdone, L.; Caserta, M.; Di Mauro, E. Role of histone acetylation in the control of gene expression. Biochem. Cell Biol. 2005, 83, 344-353. doi: 10.1139/o05-041

Annunziato, A.T.; Hansen, J.C. Role of histone acetylation in the assembly and modulation of chromatin structures. Gene Expr. 2000, 9, 37-61. doi: 10.3727/000000001783992687

Marmorstein, R.; Zhou, M.M. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 2014, 6. doi: 10.1101/cshperspect.a018762

Jambhekar, A.; Dhall, A.; Shi, Y. Roles and regulation of histone methylation in animal development. Nat. Rev. Mol. Cell Biol. 2019, 20, 625–641. doi: 10.1038/s41580-019-0151-1

Wang, J. Q.; Yan, F. Q.; Wang, L. H.; Yin, W. J.; Chang, T. Y.; Liu, J. P.; Wu, K. J. Identification of new hypoxia-regulated epithelial-mesenchymal transition marker genes labeled by H3K4 acetylation. Genes Chromosomes Cancer. 2020, 59, 73–83. doi:10.1002/gcc.22802

Chen, F.; Qi, S.; Zhang, X.; Wu, J.; Yang, X.; Wang, R. lncRNA PLAC2 activated by H3K27 acetylation promotes cell proliferation and invasion via the activation of Wnt/β catenin pathway in oral squamous cell carcinoma. Int J Oncol. 2019, 54, 1183–1194. doi:10.3892/ijo.2019.4707

Almeida, L.O.; Abrahao, A.C.; Rosselli-Murai, L.K.; Giudice, F.S.; Zagni, C.; Leopoldino, A.M. et al. NFκB mediates cisplatin resistance through histone modifications in head and neck squamous cell carcinoma (HNSCC). FEBS open bio. 2013, 4, 96–104. doi: 10.1016/j.fob.2013.12.003

Wang, K.C.; Chang, H.Y. Molecular mechanisms of long non-coding RNAs. Mol. Cell. 2011, 43, 904-914, doi: 10.1016/j.molcel.2011.08.018

Hammond, S.M. MicroRNAs as tumor suppressors. Nat. Genet. 2007, 39, 582-583. doi: 10.1038/ng0507-582

Schneider, A.; Victoria, B.; Lopez, Y.N.; Suchorska, W.; Barczak, W.; Sobecka, A. et al. Tissue and serum microRNA profile of oral squamous cell carcinoma patients. Sci. Rep. 2018, 8, 675. doi: 10.1038/s41598-017-18945-z

Sobecka, A.; Barczak, W.; Suchorska, W.M. RNA interference in head and neck oncology. Oncol. Lett. 2016, 12, 3035-3040. doi: 10.3892/ol.2016.5079

Song, J.; Yi, C. Chemical Modifications to RNA: A New Layer of Gene Expression Regulation. ACS Chem. Biol. 2017, 12, 316-325. doi: 10.1021/acschembio.6b0096

Mongan, N.P.; Emes, R.D.; Archer, N. Detection and analysis of RNA methylation. F1000Res. 2019, 8. doi: 10.12688/f1000research.17956.1

Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012, 485, 201–206. doi: 10.1038/nature11112

Yue, Y.; Liu, J.; He, C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015, 29, 1343-1355. doi: 10.1101/gad.262766.115

Ke, S.; Alemu, E.A.; Mertens, C.; Gantman, E.C.; Fak, J.J.; Mele, A. et al. A majority of m6A residues are in the last exons, allowing the potential for 3' UTR regulation. Genes Dev. 2015, 1, 2037-2053. doi: 10.1101/gad.269415.115

Paris, J.; Morgan, M.; Campos, J.; Spencer, G.J.; Shmakova, A.; Ivanova et al. Targeting the RNA m6A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia. Cell Stem Cell 2019, 3, 137-148. doi: 10.1016/j.stem.2019.03.021

Cui, Q.; Shi, H.; Ye, P.; Li, L.; Qu, Q.; Sun, G. et al. m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep. 2017, 14, 2622-2634. doi: 10.1016/j.celrep.2017.02.059

Liu, J.; Ren, D.; Du, Z.; Wang, H.; Zhang, H.; Jin, Y. m6A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression. Biochem. Biophy.s Res. Commun. 2018, 502, 456-464. doi: 10.1016/j.bbrc.2018.05.175

Wu, L.; Wu, D.; Ning, J.; Liu, W.; Zhang, D. Changes of N6-methyladenosine modulators promote breast cancer progression. BMC Cancer 2019, 19, 326. doi: 10.1186/s12885-019-5538-z

Chen, M.; Wei, L.; Law, C.T.; Tsang, F.H.; Shen, J.; Cheng, C.L. et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent post-transcriptional silencing of SOCS2. Hepatology 2018, 67,2254-2270. doi: 10.1002/hep.29683

Han, J.; Wang, J.Z.; Yang, X.; Yu, H.; Zhou, R.; Lu, H.C. et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol. Cancer 2019, 22, 110. doi: 10.1186/s12943-019-1036-9

Taketo, K.; Konno, M.; Asai, A.; Koseki, J.; Toratani, M.; Satoh, T. et al. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int. J. Oncol. 2018, 52, 621-629. doi: 10.3892/ijo.2017.4219

Zhao, X.; Cui, L. Development and validation of a m6A RNA methylation regulators-based signature for predicting the prognosis of head and neck squamous cell carcinoma. Am. J. Cancer Res. 2019, 9, 2156-2169.

Wszyscy autorzy pracy muszą wyrazić pisemną zgodę na jej publikację. Oświadczenie pierwszego autora, że wszyscy współautorzy zapoznali się z praca i wyrazili zgodę na jej publikację jest również akceptowane. W momencie przyjęcia pracy do publikacji wszelkie prawa do jej wykorzystania przechodzą na właściciela czasopisma i jego praw autorskich. Praca nie może zostać opublikowana w żadnym innym wydawnictwie do czasu wykorzystania jej przez Redakcję Czasopisma. Po opublikowaniu praca pozostaje własnością Wielkopolskiego Centrum Onkologii, a jakiekolwiek jej wykorzystanie w całości lub w części, bez względu na nośnik i język, możliwe jest tylko po uzyskaniu pisemnej zgody Redakcji, która jest wyłącznym wydawcą i dystrybutorem czasopisma , z podaniem źródła.


Download data is not yet available.