Abstract
Celem pracy była ocena użyteczności badań opóźnionych w diagnostyce różnicowej zmian łagodnych i złośliwych regionu głowy i szyi. 27 mężczyzn (średnia wieku: 62±4 lata, przedział wiekowy: 54-67 lata) poddano badaniom dwufazowym pozytonowej tomografii emisyjnej/tomografii komputerowej z użyciem radiofarmaceutyku fluoro-18-deoksyglukoza(18F-FDG-PET/CT). We wszystkich przypadkach analizowano struktury fizjologiczne nieobjęte procesem złośliwym (łącznie 207), zmiany złośliwe (41 guzów, 28 węzłów chłonnych) oraz zmiany łagodne (łącznie 15 obszarów). Badania przeprowadzono w dwóch fazach: początkowej – 60min i opóźnionej - 90 minut po dożylnej iniekcji radiofarmaceutyku 18F-FDG. Analiza obejmowała porównanie średniej i maksymalnej standaryzowanej wartości wychwytu SUV: SUVmax, SUVmean oraz jej procentowe zmiany w obu fazach badania. Zmiany o charakterze łagodnym wykazały spadek wychwytu glukozy w czasie, a obszary złośliwe wyraźny wzrost aktywności metabolicznej.
References
Vojtíšek R, Jiří Ferda J, Fíneka J. Effectiveness of PET/CT with 18F-fluorothymidine in the staging of patients with squamous cell head and neck carcinomas before radiotherapy. Rep Pract Oncol Radiother 2015;20:210-16
Rodríguez-Martínez I, del Castillo-Matos R, Quirce R, Banzo I, Jiménez-Bonilla J, Martínez-Amador N. Aortic 18F-FDG PET/CT uptake pattern at 60min (early) and 180min (delayed) acquisition in a control population: a visual and semiquantitative comparative analysis. Nucl Med Comm 2013;34:926-30
Tahari AK, Lodge MA, Wahl R. Respiratory-Gated PET/CT versus Delayed Images for the Quantitative Evaluation of Lower Pulmonary and Hepatic Lesions. J Med Imaging Radiat Oncol 2014;58:277-82
Cheng G, Torigian DA, Zhuang H. When should we recommend use of dual time-point and delayed time-point imaging techniques in FDG PET? Eur J Nucl Med Mol Imaging 2013;40:779-87
Czernin J, Allen-Auerbach M, Nathanson D, Hermann K. PET/CT in Oncology: Current status and Perspectives. Curr Radiol Rep 2013; 1: 177-90
Dondajewska E, Suchorska WM. Hypoxia-inducible factor as a transcriptional factor regulating gene expression in cancer cells. Współczesna Onkol 2011;15:234-39
Warburg O, Wind F, Negelein E. The Metabolism Of Tumors In The Body. J Gen Physiol. 1927;8:519-30
Sollini M, Pasqualetti F, Perri M, Coraggio G, Castellucci P, Roncali M, et al. Detection of a second malignancy in prostate cancer patients by using [(18)F]Choline PET/CT: a case series. Cancer Imaging 2016;16:27
Jadvar H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med 2011;52:81-89
d’ Amico A. Review of clinical practice utility of positron emission tomography with 18F-fluorodeoxyglucose in assessing tumour response to therapy. Radiol Med 2015; 120:345-51
Huang YE, Huang YJ, Ko M, Hsu CC, Chen CF. Dual-time-point 18F-FDG PET/CT in the diagnosis of solitary pulmonary lesions in a region with endemic granulomatous diseases. Ann Nucl Med 2016;30: 652-8
Ulaner GA, Lyall A. Identifying and distinguishing treatment effects and complications from malignancy at FDG PET/CT. Radiographics 2013;33:1817-1834
Lan XL, Zhang YX, Wu ZJ, Jia Q, Wei H, Gao ZR. The value of dual time point (18)F-FDG PET imaging for the differentiation between malignant and benign lesions. Clin Radiol 2008; 63:756-64
Zhang L, Wang Y, Lei J, Tian J, Zhai Y. Dual time point 18FDG-PET/CT versus single time point 18FDG-PET/CT for the differential diagnosis of pulmonary nodules: a meta-analysis. Acta Radiol 2013;54:770-777
Kim IJ, Lee JS, Kim SJ, Kim YK, Jeong YJ, Jun S, et al. Double phase 18F-FDG PET-CT for determination of pulmonary tuberculoma activity. Eur J Nucl Med Mol Imaging. 2008;35:808-14
Blomberg BA, Thomassen A, Takx RA, Vilstrup MH, Hess S, Nielsen AL, Diederichsen AC, et al. Delayed sodium 18F-fluoride PET/CT imaging does not improve quantification of vascular calcification metabolism: results from the CAMONA study. J Nucl Cardiol 2014;21:293-304
Garsa AA, Chang AJ, DeWees T, Spencer CR, Adkins DR, Dehdasht Fi, et al. Prognostic value of 18F-FDG PET metabolic parameters in oropharyngeal squamous cell carcinoma. J Radiat Oncol. 2013;2:27-34
Larson SM, Erdi Y, Akhurst T, Mazumdar M, Macapinlac HA, Finn RD, et al. Tumor Treatment Response Based on Visual and Quantitative Changes in Global Tumor Glycolysis Using PET-FDG Imaging. The Visual Response Score and the Change in Total Lesion Glycolysis. Clin Positron Imaging. 1999;2:159-71
Kadaria D, Archie DS, Sultan Ali I, Weiman DS, Freire AX, Zaman MK. Dual time point positron emission tomography/computed tomography scan in evaluation of intrathoracic lesions in an area endemic for histoplasmosis and with high prevalence of sarcoidosis. Am J Med Sci 2013;346:358-62
Tian R, Su M, Tian Y, Li F, Li L, Kuang A, Zeng J. Dual-time point PET/CT with F-18 FDG for the differentiation of malignant and benign bone lesions. Skeletal Radiol 2009;38:451-8
Shinya T, Fujii S, Asakura S, Taniguchi T, Yoshio K, Alafate A, et al. Dual-time-point F-18 FDG PET/CT for evaluation in patients with malignant lymphoma. Ann Nucl Med 2012;26:616-21
Nakayama M, Okizaki A, Ishitoya S, Sakaguchi M, Sato J, Aburano T. Dual-time-point F-18 FDG PET/CT imaging for differentiating the lymph nodes between malignant lymphoma and benign lesions. Ann Nucl Med 2013;27:163-9
Houshmand S, Salavati A, Segtnan EA, Grupe P, Høilund-Carlsen PF, Alavi A. Dual-time-point Imaging and Delayed-time-point Fluorodeoxyglucose-PET/Computed Tomography Imaging in Various Clinical Settings. PET Clin 2016; 1:65-84
Sobecka A, Barczak W, Suchorska WM. RNAi as a potential tool in gene therapy of head and neck cancer. Letters in Oncology Science 2016; 13:64-72
Dylawerska A, Barczak W, Suchorska WM. Telomerase as a therapeutic target in head and neck cancer. Letters in Oncology Science 2017; 14:22-28
Paidpally V, Chirindel A, Lam S, Agrawal N, Quon H, Subramaniam RM. FDG-PET/CT imaging biomarkers in head and neck squamous cell carcinoma. Imaging Med. 2012;4:633-47
Barczak W, Golusiński P, Luczewski L, Suchorska WM, Masternak MM, Golusiński W. The importance of stem cell engineering in head and neck oncology. Biotechnol Lett 2016; 38:1665-72
Azad GK, Cook Gj. Multi-technique imaging of bone metastases: spotlight on PET/CT, Clin Radiol 2016; 71:620-631
Hahn S, Heusner T, Kümmel S, Köninger A, Nagarajah J, Müller S, et al. Comparison of FDG-PET/CT and bone scintigraphy for detection of bone metastases in breast cancer. Acta Radiologica 2011; 52: 1009-14
Rybak LD, Rosenthal DI. Radiological Imaging for the diagnosis of bone metastases. Q J Nucl Med 2001; 45:53-64
Okada M, Sato N, Ishii K, Matsumura, Hosono M, Murakami T. FDG PET/CT versus CT, MR Imaging, and 67Ga Scintigraphy in the Post-therapy Evaluation of Malignant Lymphoma. Radiographics 2010; 30: 939-57
Lim R, Eaton A, Lee NY, Setton J, Ohri N, Rao S, et al. 18F-FDG PET/CT metabolic tumor volume and total lesion glycolysis predict outcome in oropharyngeal squamous cell carcinoma. J Nucl Med 2012; 53:1506-1513
Heindel W, Gübitz R, Vieth V, Weckesser M, Schober O, Schäfers M. The Diagnostic Imaging of Bone Metastases. Dtsch Arztebl Int 2014; 111: 741-7