Abstract
Rak płaskonabłonkowy rejonu głowy i szyi (HNSCC, ang. Head and Neck Squamous Cell Carcinoma) jest szóstym najczęściej występującym nowotworem na świecie. Leczenie tego typu nowotworów polega głównie na stosowaniu metod chirurgicznych uzupełnionych pooperacyjną chemio- i/lub radioterapią. Prowadzone są też badania nad zastosowaniem terapii genowej poprzez wykorzystanie zjawiska interferencji RNA (RNAi, ang. RNA interference). RNAi jest efektywnym narzędziem w terapii wielu chorób, takich jak zakażenia wirusowe, cukrzyca czy choroby neurodegeneracyjne. Wykazano, że cząsteczki siRNA (krótkie interferujące RNA, ang. small interfering RNA) oraz miRNA (mikroRNA, ang. microRNA) zaangażowane są w regulację wielu patologicznych procesów zachodzących podczas nowotworzenia. RNAi stała się zatem cennym narzędziem badawczym pozwalającym na lepsze poznanie mechanizmów regulujących patogenezę raka. Uważa się również, że dzięki swojej wysokiej specyficzności, zjawisko RNAi może być użytecznym narzędziem w terapii genowej nowotworów. Niniejsza praca stanowi przegląd aktualnej wiedzy na temat możliwości wykorzystania RNAi w leczeniu nowotworów rejonu głowy i szyi.
References
Suh Y, Amelio I, Guerrero Urbano T, Tavassoli M: Clinical update on cancer: molecular oncology of head and neck cancer. Cell Death Dis 5: e1018, 2014.
Thomas SM, Grandis JR: The current state of head and neck cancer gene therapy. Hum Gene Ther 20: 1565–75, 2009.
Maiti GP, Mondal P, Mukherjee N, Ghosh A, Ghosh S, Dey S, Chakrabarty J, Roy A, Biswas J, Roychoudhury S, Panda CK: Overexpression of EGFR in head and neck squamous cell carcinoma is associated with inactivation of SH3GL2 and CDC25A genes. PLoS One 8: e63440, 2013.
Kolenda T, Teresiak A, Kapałczyńska M, Przybyła W, Zajączkowska M, Bliźniak R, Lamperska K: let-7d and miR-18a as biomarkers of head and neck cancers. Letters in Oncology Science, 12, 37-47, 2015.
Martinez-Useros J, Garcia-Foncillas J: The challenge of blocking a wider family members of EGFR against head and neck squamous cell carcinomas. Oral oncology 51: 423–30, 2015.
Szybiak B, Trzeciak P, Golusiński W: Role of extended histological examination in the assessment of local recurrence of tongue and floor of the mouth cancer. Rep Pract Oncol Radiother, 17, 319–32, 2012.
Ahn S-H, Choi JY, Kim DW, Lee DY, Jeon E-H, Jeong W-J, Paik JH: Targeting HIF1alpha Peri-operatively Increased Post-surgery Survival in a Tongue Cancer Animal Model. Ann Surg Oncol Jan: 2015.
Liang J, Zhang Z, Liang L, Shen Y, Ouyang K: HIF-1alpha regulated tongue squamous cell carcinoma cell growth via regulating VEGF expression in a xenograft model. Ann Transl Med 2: 2014.
Kolenda T, Przybyła W, Mańczak-Teresiak A, Kapałczyńska M, Kowalik A, Kruszyna M, Jackowiak W, Bliźniak R, Golusiński W, Lamperska KM: mikroRNA jako biomarker personalizacji terapii nowotworów głowy i szyi. Letters in Oncology Science, 10, 50-51, 2013.
Hamilton AJ, Baulcombe D: A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286: 950–2, 1999.
Collins RE, Cheng X: Structural and biochemical advances in mammalian RNAi. J Cell Biochem 99: 1251–66, 2006.
Zaleska K.: miRNA – Therapeutic tool in breast cancer? Where are we now? Rep Pract Oncol Radiother, 20, 79–86, 2015.
Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK: RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67: 657–85, 2003.
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415–9, 2003.
Wilson RC, Doudna JA: Molecular mechanisms of RNA interference. Annu Rev Biophys. 42: 217–39, 2003.
Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS: Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 15: 331–41, 2005.
Liu Q, Paroo Z: Biochemical principles of small RNA pathways. Annu Rev Biochem 79: 295–319, 2010.
Ouellet DL, Perron MP, Gobeil L-A, Plante P, Provost P: MicroRNAs in gene regulation: when the smallest governs it all. J Biomed Biotechnol 2006: 69616, 2006.
Yeom K-H, Lee Y, Han J, Suh MR, Kim VN: Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res 34: 4622–9, 2006.
Khvorova A, Reynolds A, Jayasena SD: Functional siRNAs and miRNAs exhibit strand bias. Cell. United State 115: 209–16, 2003.
Pecot C V, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK:
RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11: 59–67, 2011.
Bouard D, Alazard-Dany D, Cosset F-L: Viral vectors: from virology to transgene expression. Br J Pharmacol 157: 153–65, 2009.
Kantor B, Bailey RM, Wimberly K, Kalburgi SN, Gray SJ: Methods for gene transfer to the central nervous system. Adv Genet 87: 125–97, 2014.
Galanis E, Vile R, Russell SJ: Delivery systems intended for in vivo gene therapy of cancer: targeting and replication competent viral vectors. Crit Rev Oncol Hemato l38: 177–92, 2001.
Morris K V, Rossi JJ: Lentiviral-mediated delivery of siRNAs for antiviral therapy. Gene Ther 13: 553–8, 2006.
Wold WSM, Toth K: Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther 13: 421–33, 2013.
Ramamoorth M, Narvekar A: Non viral vectors in gene therapy- an overview. J Clin Diagn Res 9: GE01–6, 2015.
Uprichard SL. The therapeutic potential of RNA interference. FEBS Lett 579: 5996–6007, 2005.
Chen W-H, Lecaros RLG, Tseng Y-C, Huang L, Hsu Y-C: Nanoparticle delivery of HIF1alpha siRNA combined with photodynamic therapy as a potential treatment strategy for head-and-neck cancer. Cancer Lett 359: 65–74, 2015.
Sasabe E, Zhou X, Li D, Oku N, Yamamoto T, Osaki T: The involvement of hypoxia-inducible factor-1alpha in the susceptibility to gamma-rays and chemotherapeutic drugs of oral squamous cell carcinoma cells. Int J Cancer 120: 268–77, 2007.
Sasabe E, Tatemoto Y, Li D, Yamamoto T, Osaki T: Mechanism of HIF-1alpha-dependent suppression of hypoxia-induced apoptosis in squamous cell carcinoma cells. Cancer Sci 96: 394–402, 2005.
Mimeault M, Batra SK: Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med 17: 30–54, 2013.
Jing S, Wang J, Liu Q, Cheng Y, Yang C, Wang Y, Cao F, Wen B, Jiao W, Guo Y: Relationship between hypoxia inducible factor-1alpha and esophageal squamous cell carcinoma: a meta analysis. Zhonghua Bing Li Xue Za Zhi 43: 593–9, 2014.
Xie J, Jin B, Li D-W, Shen B, Cong N, Zhang T-Z, Dong P: ABCG2 regulated by MAPK pathways is associated with cancer progression in laryngeal squamous cell carcinoma. Am J Cancer Res 4: 698–709, 2014.
Doyle LA, Yang W, Abruzzo L V, Krogmann T, Gao Y, Rishi AK, Ross
DD: A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci 95: 15665–70, 1998.
Chen Z, Liu F, Ren Q, Zhao Q, Ren H, Lu S, Zhang L, Han Z: Suppression of ABCG2 inhibits cancer cell proliferation. Int J Cancer 126: 841–51, 2010.
Noguchi K, Katayama K, Sugimoto Y: Human ABC transporter ABCG2/BCRP expression in chemoresistance: basic and clinical perspectives for molecular cancer therapeutics. Pharmgenomics Pers Med 5: 53–64, 2014.
Natarajan K, Xie Y, Baer MR, Ross DD: Role of Breast Cancer Resistance Protein (BCRP/ABCG2) in Cancer Drug Resistance. Biochem Pharmacol 15: 1084-103, 2012.
Nakanishi T, Ross DD: Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression. Chin J Cancer 31: 73-99, 2012.
Hynes RO: Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–87, 2002.
Steglich A, Vehlow A, Eke I, Cordes N: alpha integrin targeting for radiosensitization of three-dimensionally grown human head and neck squamous cell carcinoma cells. Cancer Lett 357: 542–8, 2015.
Hehlgans S, Haase M, Cordes N: Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta 1775: 163–80, 2007.
Onodera Y, Nam J-M, Sabe H: Intracellular trafficking of integrins in cancer cells. Pharmacol Ther 140: 1–9, 2013.
Desgrosellier JS, Cheresh DA: Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10: 9-22, 2010.
Lukacs RU, Memarzadeh S, Wu H, Witte ON: Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell 7: 682–93, 2010.
Li Z, Wang Y, Yuan C, Zhu Y, Qiu J, Zhang W, Qi B, Wu H, Ye J, Jiang H, Yang J, Cheng J: Oncogenic roles of Bmi1 and its therapeutic inhibition by histone deacetylase inhibitor in tongue cancer. Lab Invest 94: 1431–45, 2014.
Mazumdar A, Henderson YC, El-Naggar AK, Sen S, Clayman GL: Aurora kinase A inhibition and paclitaxel as targeted combination therapy for head and neck squamous cell carcinoma. Head Neck 31: 625–34, 2009.
Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, Schryver B, Flanagan P, Clairvoyant F, Ginther C, Chan CS, Novotny M, Slamon DJ, Plowman GD: A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 17: 3052–65, 1998.
Goepfert TM, Adigun YE, Zhong L, Gay J, Medina D, Brinkley WR: Centrosome amplification and overexpression of aurora A are early events in rat mammary carcinogenesis. Cancer Res: 62: 4115–22, 2002.
Kovarikova V, Burkus J, Rehak P, Brzakova A, Solc P, Baran V: Aurora kinase A is essential for correct chromosome segregation in mouse zygote. Zygote 15: 1–12, 2015.
Katsha A, Belkhiri A, Goff L, El-Rifai W: Aurora kinase A in gastrointestinal cancers: time to target. Mol Cancer 20: 106, 2015.
Sun J-M, Yang L-N, Xu H, Chang B, Wang H-Y, Yang G: Inhibition of Aurora A promotes chemosensitivity via inducing cell cycle arrest and apoptosis in cervical cancer cells. Am J Cancer Res 5: 1133–45, 2015.
Tanaka H, Nakashiro K, Iwamoto K, Tokuzen N, Fujita Y, Shirakawa R, Oka R, Goda H, Hamakawa H: Targeting Aurora kinase A suppresses the growth of human oral squamous cell carcinoma cells in vitro and in vivo. Oral Oncol 49: 551–9, 2013.
Whitehead KA, Langer R, Anderson DG: Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov: 8: 129–38, 2009.
U.S. National Institutes of Health: ClinicalTrials.gov: ClinicalTrials.gov Background. [https://clinicaltrials.gov/ct2/about-site/background]. Dostęp: 29.06.2016.
U.S. National Institutes of Health: ClinicalTrials.gov: APN401 in Treating Patients With Melanoma, Kidney Cancer, Pancreatic Cancer, or Other Solid Tumors That Are Metastatic or Cannot Be Removed By Surgery. [http://clinicaltrials. gov/show/NCT02166255]. Dostęp:
06.2016.
U.S. National Institutes of Health: ClinicalTrials.gov: EphA2 Gene Targeting Using Neutral Liposomal Small Interfering RNA Delivery. [http://clinicaltrials. gov/show/NCT01591356]. Dostęp: 29.06.2016.
U.S. National Institutes of Health: ClinicalTrials.gov: Safety Study of CALAA-01 to Treat Solid Tumor Cancers. [http://clinicaltrials.gov/show/NCT00689065]. Dostęp: 29.06.2016.
U.S. National Institutes of Health: ClinicalTrials.gov: Phase I-
Escalating Dose Study of siG12D LODER (Local Drug EluteR) in Patients With Locally Advanced Adenocarcinoma of the Pancreas and a Single Dose Study of siG12D LODER (Local Drug EluteR) in Patients With Non-operable Adenocarcinoma of the Pancreas. [ http://clinicaltrials.gov/show/NCT01188785]. Dostęp: 29.06.2016.
U.S. National Institutes of Health: ClinicalTrials.gov: A Phase II Study of siG12D LODER in Combination With Chemotherapy in Patients With Unresectable Locally Advanced Pancreatic Cancer. [http://clinicaltrials.gov/show/NCT01676259]. Dostęp: 29.06.2016.